Корни комплексного уравнения на комплексной плоскости

Извлечение корня из комплексного числа

Третий урок по комплексным числам. В этом уроке вы узнаете:

Начнём с ключевого определения.

1. Определение комплексного корня

Определение. Корнем $n$-й степени из комплексного числа $z$, где $n\in \mathbb$, $n \gt 1$, называется такое комплексное число $\omega $, что

т.е. $n$-я степень числа $\omega $ равна $z$.

Таких корней на множестве комплексных чисел всегда будет ровно $n$ штук. Все они обозначаются привычным знаком радикала:

Пример. Вычислить $\sqrt[3]<-1>$ на множестве комплексных чисел.

Очевидно, привычная нам единица является таким корнем, потому что $<<\left( -1 \right)>^<3>>=-1$. Но есть ещё два корня:

Итого три корня. Как и предполагалось.

Теорема. Для любого комплексного числа $z\ne 0$ существует ровно $n$ комплексных чисел, каждое из которых является корнем $n$-й степени из числа $z.$

Все эти корни считаются по следующей формуле.

2. Формула корней

Теорема. Пусть комплексное число записано в тригонометрической форме:

\[z=\left| z \right|\cdot \left( \cos \varphi +i\sin \varphi \right)\]

Тогда все корни степени $n$ из этого числа можно найти по формуле:

По сути, эта теорема является обратной к формуле Муавра:

Почему степень всегда одна, а корней несколько — об этом в конце урока. Сейчас для нас главное — алгоритм извлечения корня из комплексного числа. Он состоит из четырёх шагов:

  1. Перевести комплексное число в тригонометрическую форму;
  2. Записать общую формулу корня степени $n$;
  3. Подставить в эту формулу $k=0$, затем $k=1$ и так до $k=n-1$.
  4. Получим $n$ комплексных корней. Вместе они и будут ответом.

В ответе всегда будет набор из $n$ чисел. Потому что невозможно однозначно извлечь корень из комплексного числа $z\ne 0$.

Представим число $-8i$ в тригонометрической форме:

\[\begin -8i &=0+\left( -8 \right)\cdot i= \\ & =8\cdot \left( 0+\left( -1 \right)\cdot i \right)= \\ & =8\cdot \left( \cos \left( -\frac<\pi > <2>\right)+i\sin \left( -\frac<\pi > <2>\right) \right) \end\]

Запишем формулу корней в общем виде:

\[\sqrt[3]<-8i>=2\cdot \left( \cos \left( -\frac<\pi > <6>\right)+i\sin \left( -\frac<\pi > <6>\right) \right)=\sqrt<3>-i\]

В ответе нужно указать все три числа: $-2i$; $\sqrt<3>-i$; $-\sqrt<3>-i$.

Ещё раз: подставляя разные $k$, мы будем получать разные корни. Всего таких корней будет ровно $n$. А если взять $k$ за пределами диапазона $\left\< 0,1. n-1 \right\>$, то корни начнут повторяться, и ничего нового мы не получим.

3. Геометрическая интерпретация

Если отметить на комплексной плоскости все значения корня $n$-й степени из некоторого комплексного числа $z\ne 0$, то все они будут лежать на окружности с центром в начале координат и радиусом $R=\sqrt[n]<\left| z \right|>$. Более того: эти точки образуют правильный $n$-угольник.

Отметить на комплексной плоскости все числа вида $\sqrt[3]$.

Представим число $z=i$ в тригонометрической форме:

\[\begin z & =1\cdot \left( 0+i\cdot 1 \right)= \\ & =1\cdot \left( \cos \frac<\pi ><2>+i\sin \frac<\pi > <2>\right) \end\]

Формула комплексных корней:

\[\sqrt[3]=1\cdot \left( \cos \left( \frac<\pi ><6>+\frac<2\pi k> <3>\right)+i\sin \left( \frac<\pi ><6>+\frac<2\pi k> <3>\right) \right)\]

Это три точки $<_<1>>$, $<_<2>>$ и $<_<3>>$ на окружности радиуса $R=1$:

Получили правильный треугольник. Его первая вершина лежит на пересечении окружности радиуса 1 и начального луча, который образован поворотом оси $OX$ на угол $<\pi >/<6>\;$.

Рассмотрим более сложный пример:

Отметить на комплексной плоскости все числа вида $\sqrt[4]<1+i>$.

Сразу запишем формулу корней с выделением начального луча:

\[\sqrt[4]=\sqrt[8]<2>\cdot \left( \cos \left( \frac<\pi ><16>+\frac<\pi k> <2>\right)+i\sin \left( \frac<\pi ><16>+\frac<\pi k> <2>\right) \right)\]

Отмечаем эти точки на комплексной плоскости. Радиус окружности $R=\sqrt[8]<2>$, начальный луч $<\pi >/<16>\;$:

И вновь всё чётко: четыре точки — правильный четырёхугольник, т.е. квадрат. С отклонением начального луча $<\pi >/<16>\;$.

Ну и ещё один пример — вновь без промежуточных вычислений. Только формулировка задачи, формула корней и окончательный чертёж:

Отметить на комплексной плоскости все числа вида $\sqrt[6]<-64>$.

Формула корней с выделением начального луча:

\[\sqrt[6]=2\cdot \left( \cos \left( \frac<\pi ><6>+\frac<\pi k> <3>\right)+i\sin \left( \frac<\pi ><6>+\frac<\pi k> <3>\right) \right)\]

Получили правильный шестиугольник со стороной 2 и начальным лучом $<\pi >/<6>\;$.

Таким образом, мы получаем «графический» алгоритм извлечения корня $n$-й степени из комплексного числа $z\ne 0$:

  1. Перевести число в тригонометрическую форму;
  2. Найти модуль корня: $\sqrt[n]<\left| z \right|>$ — это будет радиусом окружности;
  3. Построить начальный луч с отклонением $\varphi =<\arg \left( z \right)>/\;$;
  4. Построить все остальные лучи с шагом $<2\pi >/\;$;
  5. Получим точки пересечения лучей с окружностью — это и есть искомые корни.

Такой алгоритм прекрасно работает, когда аргумент исходного числа и отклонение начального луча $\varphi $ — стандартные «табличные» углы вроде $<\pi >/<6>\;$. На практике чаще всего именно так и бывает. Поэтому берите на вооружение.:)

4. Почему корней всегда ровно n

С геометрической точки зрения, всё очевидно: если мы будем последовательно зачёркивать вершины правильного $n$-угольника, то ровно через $n$ шагов все вершины будут зачёркнуты. И для дальнейшего зачёркивания придётся выбирать вершину среди уже зачёркнутых.

Однако рассмотрим проблему с точки зрения алгебры. Ещё раз запишем формулу корня $n$-й степени:

Последовательно подставим в эту формулу указанные значения параметра $k$:

Очевидно, последняя строка получена при $k=n-1$. Подставим теперь $k=n$:

Поскольку синус и косинус — периодические функции с периодом $2\pi $, $<<\omega >_>=<<\omega >_<0>>$, и далее корни будут повторяться. Как мы и заявляли в самом начале урока.

5. Выводы

Ключевые факты из урока.

Определение. Корень степени $n$ из комплексного числа $z$ — это такое число $\omega $, что $<<\omega >^>=z$.

Обозначение. Для обозначения комплексных корней используется знакомый знак радикала: $\omega =\sqrt[n]$.

Замечание. Если $z\ne 0$, таких чисел корней будет ровно $n$ штук.

Алгоритм нахождения корней состоит из двух шагов.

Шаг 1. Представить исходное число в тригонометрической форме:

\[z=\left| z \right|\cdot \left( \cos \varphi +i\sin \varphi \right)\]

Шаг 2. Воспользоваться формулой Муавра для вычисления корней:

Все полученные корни лежат на окружности радиуса $\sqrt[n]<\left| z \right|>$ с центром в начале координат и являются вершинами правильного $n$-угольника. Первая вершина лежит на т.н. «начальном луче», который отклонён от положительной полуоси $OX$ на угол $<\varphi >/\;$. Остальные вершины обычно легко находятся из соображений симметрии с помощью циркуля и линейки.

Геометрическую интерпретацию можно использовать для быстрого «графического» извлечения корней. Но это требует практики и хорошего понимания, что именно и зачем вы делаете. Технология такого извлечения корней описана выше в разделе «Геометрическая интерпретация».

Всё. В следующем уроке начнём решать уравнения в комплексных числах.:)


источники: