Коррозия металла в воде уравнение

Коррозия металлов. Виды коррозии металлов

Определение коррозии

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией.

Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов:

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь.

Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Виды химической коррозии

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Фактор Пиллинга-Бэдворса

Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

где Vок — объем образовавшегося оксида

VМе — объем металла, израсходованный на образование оксида

Мок – молярная масса образовавшегося оксида

ρМе – плотность металла

n – число атомов металла

AMe — атомная масса металла

ρок — плотность образовавшегося оксида

Оксидные пленки, у которых α 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения сплошности α для некоторых оксидов металлов

МеталлОксидαМеталлОксидα
KK2O0,45ZnZnO1,55
NaNa2O0,55AgAg2O1,58
LiLi2O0,59ZrZrO21.60
CaCaO0,63NiNiO1,65
SrSrO0,66BeBeO1,67
BaBaO0,73CuCu2O1,67
MgMgO0,79CuCuO1,74
PbPbO1,15TiTi2O31,76
CdCdO1,21CrCr2O32,07
AlAl2­O21,28FeFe2O32,14
SnSnO21,33WWO33,35
NiNiO1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.

Водородная деполяризация

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде:

2H + +2e — = H2 разряд водородных ионов

Кислородная деполяризация

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде:

O2 + 4H + +4e — = H2O восстановление растворенного кислорода

Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Виды электрохимической коррозии

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O2 + 4H + + 4e — = 2H2O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла и коррозионной среды

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Примеры задач с решениями на определение защитных свойств оксидных пленок, определение коррозионной стойкости металлов, а также уравнения реакций, протекающих при электрохимической коррозии металлов приведены в разделе Задачи к разделу Коррозия металлов

Коррозия металлов и способы защиты от нее

Коррозия – это процесс разрушения металлов и металлических конструкций под воздействием различных факторов окружающей среды – кислорода, влаги, вредных примесей в воздухе.

Коррозионная стойкость металла зависит от его природы, характера среды и температуры.

  • Благородные металлы не подвергаются коррозии из-за химической инертности.
  • Металлы Al, Ti, Zn, Cr, Ni имеют плотные газонепроницаемые оксидные плёнки, которые препятствуют коррозии.
  • Металлы с рыхлой оксидной плёнкой – Fe, Cu и другие – коррозионно неустойчивы. Особенно сильно ржавеет железо.

Различают химическую и электрохимическую коррозию.

Химическая коррозия сопровождается химическими реакциями. Как правило, химическая коррозия металлов происходит при действии на металл сухих газов, её также называют газовой.

При химической коррозии также возможны процессы:

Fe + 2HCl → FeCl2 + H2

2Fe + 3Cl2 → 2FeCl3

Как правило, такие процессы протекают в аппаратах химических производств.

Электрохимическая коррозия – это процесс разрушения металла, который сопровождается электрохимическими процессами. Как правило, электрохимическая коррозия протекает в присутствии воды и кислорода, либо в растворах электролитов.

В таких растворах на поверхности металла возникают процессы переноса электронов от металла к окислителю, которым является либо кислород, либо кислота, содержащаяся в растворе.

При этом электродами являются сам металл (например, железо) и содержащиеся в нем примеси (обычно менее активные металлы, например, олово).

В таком загрязнённом металле идёт перенос электронов от железа к олову, при этом железо (анод) растворяется, т.е. подвергается коррозии:

Fe –2e = Fe 2+

На поверхности олова (катод) идёт процесс восстановления водорода из воды или растворённого кислорода:

2H + + 2e → H2

O2 + 2H2O + 4e → 4OH –

Например, при контакте железа с оловом в растворе соляной кислоты происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: 2H + + 2e → H2

Суммарная реакция: Fe + 2H + → H2 + Fe 2+

Если реакция проходит в атмосферных условиях в воде, в ней участвует кислород и происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: O2 + 2H2O + 4e → 4OH –

Суммарная реакция:

Fe 2+ + 2OH Fe(OH)2

4Fe(OH)2 + O2+ 2H2O → 4Fe(OH)3

При этом образуется ржавчина.

Методы защиты от коррозии

Защитные покрытия

Защитные покрытия предотвращают контакт поверхности металла с окислителями.

  • Катодное покрытие – покрытие менее активным металлом (защищает металл только неповреждённое покрытие).
  • Покрытие краской, лаками, смазками.
  • Создание на поверхности некоторых металлов прочной оксидной плёнки химическим путём (анодирование алюминия, кипячение железа в фосфорной кислоте).

Создание сплавов, стойких к коррозии

Физические свойства сплавов могут существенно отличаться от свойств чистых металлов. Добавление некоторых металлов может приводить к повышению коррозионной стойкости сплава. Например, нержавеющая сталь, новые сплавы с большой коррозионной устойчивостью.

Изменение состава среды

Коррозия замедляется при добавлении в среду, окружающую металлическую конструкцию, ингибиторов коррозии. Ингибиторы коррозии — это вещества, подавляющие процессы коррозии.

Электрохимические методы защиты

Протекторная защита: при присоединении к металлической конструкции пластинок из более активного металла – протектора. В результате идёт разрушение протектора, а металлическая конструкция при этом не разрушается.

Теоретические основы коррозии (стр. 13 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Рис. 16. Зависимость скорости коррозии стали от температуры воды. 1 – закрытая система, 2 – открытая система

Как видно из рис. 16, в первом случае при повышении температуры скорость коррозии непрерывно увеличивается, во втором − до 80 оС наблюдается усиление коррозии, но при более высокой температуре вследствие уменьшения содержания кислорода в растворе скорость коррозии уменьшается.

Помимо прямого влияния температуры, установленным является факт влияния теплопередачи на коррозию металлов как в активном, так и пассивном состояниях. Действие тепловых потоков на скорость коррозии металлов является сложным и определяется природой коррозионной системы. Передача тепла от металла к раствору или в обратном направлении не просто изменяет температуру в коррозионной зоне, но влияет на массоперенос в жидкости, а в связи с этим − на механизм и кинетические закономерности коррозионного процесса и состав фазовой границы.

Причиной интенсификации коррозии в неизотермических условиях считается повышение концентрации кислорода у корродирующей поверхности, омываемой более холодной жидкостью.

При кинетическом контроле в кислой среде теплопередача от жидкости к металлу усиливает коррозию металла, а при обратном направлении теплового потока – уменьшает. Приведенные эффекты объясняются влиянием теплопереноса на структуру и состав двойного электрического слоя, а также на механизм процесса. Например, в растворе 1N Na2SO4 (рН = 2) изменяется порядок реакции по ОН−− и SO42−−ионам. При тепловой нагрузке 19 – 58 кВт/м2 теплопередача приводит к усилению коррозии углеродистой стали в водных растворах при любом характере деполяризации – водородной и кислородной.

Увеличение скорости коррозии на 2 – 3 порядка при теплопередаче наблюдается при неполном погружении в раствор за счет усиления процессов испарения – конденсации и появления зон повышенной коррозионной агрессивности в системе «металл−раствор».

На коррозионном поведении неизотермических систем может проявляться термогальваническая коррозия из−за наличия температурного градиента по сечению металла.

Кроме того, на теплопередающей поверхности интенсифицируются процессы кристаллизации труднорастворимых солевых систем из−за изменения физико−химических свойств растворенных в воде компонентов. Самым распространенным видом солеотложения является карбонат кальция из−за взаимных превращений диссоциированных форм карбонатно−кальциевой основы воды. Повышение температуры, теплопередача, солеотложения способствуют развитию неравномерной, как правило, язвенной коррозии.

3.8. Коррозия в пресной и минерализованных водах

По концентрации солей воды подразделяются на пресные (0,001 − 0,1 %), минерализованные (0,1 – 1 %), соленые (1 – 5 %) и рассольные (5 – 35 %).

Компонентный состав оборотных вод, используемых предприятиями, чрезвычайно неоднороден и зависит от источников водоснабжения, сезонных изменений, характера производства, системы очистки подпиточных вод, коэффициента упаривания воды на градирнях[18] и ряда других факторов.

В таблице 4 представлены обобщенные данные по компонентному составу оборотных вод, используемых предприятиями нефтеперерабатывающей и нефтехимической промышленности. Состав оборотных вод классифицирован на три группы по общему солесодержанию.

Компонентный состав оборотных вод нефтеперерабатывающих и нефтехимических предприятий

Сульфидов, мг H2S/л

Хлоридов, мг Cl–/л

Сульфатов, мг SO2–4/л

Общее солесодержание, мг/л

Жесткость общая, мэкв/л

Механических примесей, мг/л

Первая группа это предприятия, использующие оборотную воду с солесодержанием до 2000 мг/л. К ней относится до 90 % всех нефте− и газоперерабатывающих предприятий.

Вторая группа − предприятия, использующие оборотную воду с солесодержанием от 2000 до 8000 мг/л. Повышенные концентрации солей объясняются значительной засоленностью пресноводного источника водоснабжения или концентрированием солей вследствие длительного циркулирования воды при минимальной продувке. К этой группе относится около 8 % предприятий.

Третья группа (около 2 % предприятий) − использует морскую воду.

Коррозионная агрессивность оборотных вод определяется следующими основными факторами: величиной рН, концентрацией растворенного кислорода, диоксида углерода, хлоридов, сульфатов, сульфидов. Карбонаты, механические примеси, а также биообрастания, отлагаясь на поверхности охлаждаемой аппаратуры, способствуют интенсивному развитию различных видов коррозии.

Основными компонентами, растворенными в воде, являются хлориды сульфаты, карбонаты щелочных и щелочноземельных металлов: Na+ , Ca2+ , Mg2+ , Cl–, CO32– , HCO–3. Количественное соотношение между этими ионами определяет тип воды. По составу содержащихся в воде солей, воды делятся на две основные группы: щелочные, в состав которых входят, кроме NaCl, углекислые и двууглекислые соли натрия, и жесткие, содержащие двууглекислые и хлористые соли кальция и магния.

Хлориды и сульфаты повышают коррозионную агрессивность воды. Адсорбируясь на поверхности металла, они образуют соединения, обладающие хорошей растворимостью, что приводит к увеличению скорости коррозии стали. Наиболее агрессивны хлорид−ионы, способные легко проникать через защитные поверхностные пленки металла.

Скорость коррозии углеродистой стали в воде, содержащей хлориды при температуре 60 ºС, растет до 2,6 г/(м2ּч), при увеличении концентрации хлоридов до 180 мг/л и далее остается практически постоянной (Рис. 17). При температуре 400С скорость коррозии равномерно увеличивается до 2 г/(м2ּч) при росте концентрации хлоридов примерно до 5500 мг/л.

Скорость коррозии в зависимости от концентрации сульфат−ионов возрастает в интервале концентраций 50−500 мг/л и в дальнейшем существенно не изменяется (Рис. 18).

Максимальная концентрация сульфидов для оборотных вод 1 группы достигает 60 мг/л, а для оборотных вод 2 группы – 1 мг/л. Наряду с увеличением общего солесодержания при переходе от оборотных вод 1 группы к 3 группе происходит рост максимальных концентраций хлоридов и сульфатов.

Неоднородность слоев вторичных продуктов коррозии приводит к возникновению пар дифференциальной аэрации и развитию локальной коррозии по автокаталитическому механизму, впервые описанному Эвансом. Схема данного механизма изображена на Рис. 19.

Сформированные вторичные продукты коррозии, в виде «бугорка», выполняют роль диафрагмы, то есть диффузионной среды, пространственно разделяющей анодные и катодные участки элементов дифференциальной аэрации. Вне бугорка действуют катоды коррозионного элемента с восстановлением кислорода по реакции:

O2 + 2Н2О + 4е → 4ОН–

Равновесный потенциал этой реакции составляет 1,23 В. Однако в реально действующем коррозионном элементе катоды заполяризованы и функционируют при доминирующем диффузионном контроле на предельном токе восстановления кислорода.

Кинетические характеристики анодного процесса под вторичными продуктами коррозии определяют развитие язвенной коррозии. Главную роль при этом выполняют содержащиеся в воде анионы−активаторы: хлорид, сульфат, гидрокарбонат и др. Возникающая в коррозионном элементе движущая разность потенциалов способствует миграции анионов−активаторов через пористый слой бугорка внутрь язвы (к анодному участку). Накопление анионов и ионов Fe2+ (являющихся продуктом анодного процесса) в закрытой полости язвы приводит к гидролизу, снижению рН до

3 и уменьшению стационарного потенциала железа. Это делает возможным протекание коррозионного процесса с водородной деполяризацией по гомогенному механизму.

Участие анионов в анодном процессе связано с их адсорбцией на активных участках поверхности металла и образованием промежуточных комплексов. Это приводит к облегчению отдельных стадий перехода атома металла в раствор. Коррозионная активность анионов возрастает в ряду: сульфат, хлорид, гидрокарбонат. С ростом концентрации Cl– в воде на поверхности стали увеличивается количество «бугорков» и их высота, глубина язв возрастает при этом почти на порядок по отношению к воде, не содержащей хлоридов.

Важным фактором, влияющим на скорость коррозии в водных средах, является значение рН электролита. Для оборотных вод предприятий нефте− и газопереработки наиболее характерны значения рН от 6,5 до 9,5.


источники:

http://chemege.ru/korroziya/

http://pandia.ru/text/80/349/84376-13.php