Коррозия в морской воде уравнение реакции

Коррозия в морской воде уравнение реакции

8.2 ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ

Причиной электрохимической коррозии * является возникновение на поверхности металла короткозамкнутых гальванических элементов *.

В тонком слое влаги, обычно покрывающем металл, растворяются кислород, углекислый, сернистый и другие газы, присутствующие в атмосферном воздухе. Это создает условия соприкосновения металла с электролитом *. Различные участки поверхности любого металла обладают разными потенциалами. Причинами этого могут быть наличие примесей в металле, различная обработка отдельных его участков, неодинаковые условия (окружающая среда), в которых находятся различные участки поверхности металла. При этом участки поверхности металла с более электроотрицательным потенциалом становятся анодами и растворяются.

Электрохимическая коррозия может развиваться в результате контакта различных металлов. В этом случае будет возникать не микр о- , а макрогальванопара , и коррозия называется контактной (см. детальную классификацию видов коррозии). Сочетания металлов, сильно отличающихся значениями электродных потенциалов *, в технике недопустимы (например, алюминий – медь). В случае коррозии, возникающей при контакте какого-либо металла со сплавом, последний имеет потенциал, соответствующий наиболее активному металлу, входящему в состав сплава. Например, при контакте латуни (сплав цинка и меди) с железом корродировать будет латунь за счет наличия в ней цинка.

Представим схематично работу короткозамкнутого гальванического элемента, возникающего на поверхности металла, подверженного коррозии в электролите * (рисунок 8.1). Анодный участок имеет более электроотрицательный потенциал, поэтому на нем идет процесс окисления металла. Образовавшиеся в процессе окислен ия ио ны переходят в электролит, а часть освободившихся при этом электронов может перемещаться к катодному участку (на рисунке 8.1 показано стрелками). Процесс коррозии будет продолжаться в том случае, если электроны, перешедшие на катодный участок, будут с него удаляться. Иначе произойдет поляризация электродов *, и работа коррозионного гальванического элемента прекратится.

Рисунок 8.1 – Схема электрохимической коррозии. Д – деполяризатор

Процесс отвода электронов с катодных участков называется деполяризацией. Вещества, при участии которых осуществляется деполяризация, называются деполяризаторами. На практике чаще всего приходится встречаться с двумя типами деполяризации: водородной и кислородной. Тип деполяризации (катодный процесс) зависит от реакции среды раствора электролита.

В кислой среде электрохимическая коррозия протекает с водородной деполяризацией. Рассмотрим коррозию железной пластинки с примесями меди во влажной хлористоводородной атмосфере Имеется в виду атмосфера с примесью газообразного HCl. . В этом случае железо будет анодом ( E ° = –0,44В), а медь – катодом ( E ° =+0,34В). На анодном участке будет происходить процесс окисления железа, а на катодном – процесс деполяризац ии ио нами водорода, которые присутствуют в электролите:

А: Fe – 2e → Fe 2+ – окисление

К: 2 H + + 2e → H2 ↑ – восстановление

Схема возникающего короткозамкнутого гальванического элемента выглядит следующим образом:

A (–) Fe | HCl | Cu (+) К

В нейтральной среде коррозия протекает с кислородной деполяризацией, т.е. роль деполяризатора выполняет кислород, растворенный в воде. Этот вид коррозии наиболее широко распространен в природе: он наблюдается при коррозии металлов в воде, почве и в незагрязненной промышленными газами атмосфере. Если коррозии во влажном воздухе подвергается железо с примесями меди, то электродные процессы можно записать в виде:

(А) Fe – 2e → Fe 2+ – окисление

(К) 2 H2O + O2 + 4e → 4 OH – – восстановление

У поверхности металла в электролите протекают следующие реакции:

Fe 2+ + 2 OH – → Fe( OH)2

Основная масса черных металлов разрушается вследствие процесса ржавления, в основе которого лежат вышеуказанные реакции.

Коррозия металла в результате неравномерного доступа кислорода . Случаи электрохимической коррозии, возникающей вследствие неравномерной аэрации кислородом различных участков металла, очень часто встречаются в промышленности и в подземных сооружениях. Примером может служить коррозия стальной сваи, закопанной в речное дно (рис 8.2).

Рисунок 8.2 – Коррозия в результате неравномерного доступа кислорода. Б – техническое сооружение; А – анодный участок; К – катодный участок.

Часть конструкции, находящаяся в воде, омывается растворенным в ней кислородом и, в случае возникновения условий для электрохимической коррозии, будет выполнять роль катода. Другая же часть конструкции, находящаяся в почве, будет анодом и подвергнется разрушению.

Примеры защиты металлов от коррозии

Решение задач по химии на покрытие металлов

Задание 284.
Если пластинку из чистого цинка опустить в разбавленную кислоту, то начавшееся выделение водорода вскоре почти прекращается. Однако при прикосновении к цинку медной палочкой на последней начинается бурное выделение водорода. Дайте этому объяснение, составив электронные уравнения анодного и катодного процессов. Напишите уравнения протекающей химической реакции.
Решение:
При опускании пластинки из чистого цинка в раствор разбавленной кислоты, начавшееся выделение водорода вскоре почти прекратится, потому что на пластинке из цинка образуется оксидная плёнка, которая будет препятствовать дальнейшему взаимодействию цинка с разбавленной кислотой. Оксидная плёнка образуется при взаимодействии цинка с кислородом, растворённым в воде по схеме:

Если прикоснуться к цинковой пластинке медной палочкой, то возникнет гальваническая пара цинк — медь, в которой цинк будет являться анодом, а медь – катодом. Это происходит, потому что стандартный электродный потенциал цинка (-0,763 В) значительно отрицательнее, чем потенциал меди (+0,34 В).

Анодный процесс: Zn 0 — 2 = Zn 2+
Катодный процесс в кислой среде: 2Н + + 2 = H2

Образующиеся ионы Zn 2+ будут с имеющимися анионами кислоты давать соль, а ионы водорода Н + , деполяризуясь на медной палочке, Zn 0 — 2 = Zn 2+ образуют водород, который в виде пузырьков газа выделяется из раствора. Ионно-молекулярное уравнение реакции будет иметь вид:

Zn + 2H + = Zn 2+ + H2

Задание 285.
В чем сущность протекторной защиты металлов от коррозии? Приведите пример протекторной защиты железа в электролите, содержащем растворенный кислород. Составьте электронные уравнения анодного и катодного процессов.
Решение:
Для предотвращения коррозии стальных конструкций применяется протекторная защита: создаётся электрический контакт защищаемой конструкции с протектором – более активным металлом (обычно Zn, Mg, Al или их сплавы). При таком контакте возникает гальваническая пара типа Zn — Fe и коррозии подвергается протектор, а не сама стальная конструкция (трубопровод, корпус корабля и т.п.). Например, корпус корабля защищают протектором – цинковые брусья, которые крепят в нескольких местах днища корабля. Под действием морской воды и кислорода цинк разрушается, а корпус корабля защищается, таким образом, от коррозии. При этом протекают следующие электрохимические процессы:

Анодный процесс: Zn 0 — 2 = Zn 2+ ;
Катодный процесс:
а) в нейтральной или щелочной среде: 1/2O2 + H2O + 2 = 2OH — ;
б) в кислой среде: 1/2O2 + 2H + + 2 = H2O

Таким образом, цинк разрушается, окисляясь до ионов Zn2+, которые с гидроксильными ионами образуют нерастворимый гидроксид Zn(OH)2 или в виде ионов Zn2+ уходит в раствор, если реакция среды кислая. Основной металл остаётся неповреждённым.

Задание 286.
Железное изделие покрыли никелем. Какое это покрытие — анодное или катодное? Почему? Составьте электронные уравнения анодного и катодного процессов коррозии этого изделия при нарушении покрытия во влажном воздухе и в хлороводородной (соляной) кислоте. Какие продукты коррозии образуются в первом и во втором случаях?
Решение:
Железо имеет более электроотрицательный стандартный электродный потенциал (-0,44 В), чем никель (-0,24 В), поэтому железо является анодом, никель – катодом.

Анодный процесс – окисление металла: Fe 0 — 2 = Fe 2+

и катодный процесс – восстановление ионов водорода (водородная деполяризация) или молекул кислорода (кислородная деполяризация). Поэтому при коррозии пары Fe — Ni с водородной деполяризацией происходит следующие процессы:

Анодный процесс: Fe 0 — 2 = Fe 2+
Катодный процесс: в кислой среде: 2Н + + 2 = Н2

Продуктом коррозии будет газообразный водород соединение железа с кислотным остатком (соль).

При коррозии пары Fe — Ni в атмосферных условиях на катоде происходит кислородная деполяризация, а на аноде – окисление железа:

Анодный процесс: Fe 0 — 2 = Fe 2+
Катодный процесс:
в нейтральной среде: 1/2O2 + H2O + 2 = 2OH —

Так как ионы Fe 2+ с гидроксид-ионами ОН — образуют нерастворимый гидроксид, то продуктом коррозии будет Fe(OH)2. При контакте с кислородом воздуха Fe(OH)2 быстро окисляется до метагидроксида железа FeO(OH), приобретая характерный для него бурый цвет:

Так как никель имеет более электроположительный стандартный электродный потенциал, чем железо, то данное покрытие является катодным. При повреждении катодного покрытия (или наличия пор) возникает коррозионный элемент, в котором основной материал в поре служит анодом и растворяется, а материал покрытия – катодом, на котором выделяется водород или поглощается кислород. Следовательно, данное катодное покрытие может защищать железо от коррозии лишь при отсутствии пор и повреждений покрытия.

Морская коррозия

Морская коррозия – один из видов электрохимической коррозии. Морская вода – отличный электролит. Морская вода хорошо аэрирована (около 8 мг/л кислорода), имеет достаточно высокую электропроводность (может достигать 3•10 -2 Ом -1 см -1 ), которая исключает появление омического торможения. Среда – нейтральная (рН = 7,2 – 8,6). В морской воде присутствуют соли кальция, калия, магния, сульфаты натрия, хлориды.

Именно из-за наличия в морской воде растворенных хлоридов (ионов-активаторов Cl — ) она обладает депассивирующим действием, по отношении к металлической поверхности (разрушает и предотвращает появление пассивных пленок на поверхности металла).

Морской коррозии подвергаются: металлическая обивка днищ судов, подводные трубопроводы, морская авиация, различные металлоконструкции, находящиеся в воде, металлические конструкции в портах, прокатные валки на блюминге, которые охлаждаются морской водой и т.п.

Наиболее часто выбирают для эксплуатации в условиях морской коррозии сталь. Для быстроходных морских судов и морской авиации используют более легкие сплавы.

Особенности процесса морской коррозии:

— высокая агрессивность среды (как самой воды, так и окружающей атмосферы);

— большое влияние контактной коррозии металлов;

— дополнительное влияние механического фактора (эрозия, кавитация);

— протекание биологической коррозии и большое влияние биологического фактора (обрастание днища морского суда микроорганизмами).

Морская коррозия протекает с кислородной деполяризацией и является электрохимическим процессом. Процесс проходит по смешанному дифузионно-кинетическому катодному контролю. При интенсивной аэрации, быстром движении морского суда или самой воды (течение) может преобладать кинетический контроль. В условиях неподвижной морской воды или при наличии на металлической поверхности толстого шара вторичных продуктов коррозии преобладает диффузионный катодный контроль.

В условиях морской коррозии защитная пленка (оксидная или шар продуктов коррозии) являются катодом, а металл в порах, трещинах и других дефектах – анодом.

При протекании морской коррозии кроме равномерного разрушения дополнительно образуются глубокие язвы.

Морская атмосфера менее агрессивна, чем промышленная.

При протекании морской атмосферной коррозии разрушения носят более равномерный характер, чем коррозия в морской воде.

Факторы морской коррозии металлов

Соленость воды

Соленость воды – влияет на скорость протекания морской коррозии незначительно. Соленость воды колеблется от 10‰ (Азовское море) до 35,6‰ (Тихий океан). Величина солености воды показывает количество твердых веществ в граммах, растворенных в 1000 г морской воды.

Состав морской воды

Состав морской воды иногда может играть достаточно большую роль. Например, присутствие в воде сероводорода облегчает протекание как катодного, так и анодного процессов коррозии. На поверхности металла образуются труднорастворимые сульфиды, кроме того идет подкисление среды. Ионы брома, йода даже при очень малом их содержании ускоряют процесс морской коррозии металлов. Некоторые соединения могут оказывать благоприятное действие (углекислый кальций, кремнекислые соединения). Они образуют на поверхности металла или сплава оксидную пленку, обладающую защитным эффектом.

Движение водных масс

Движение водных масс влияет на скорость диффузии кислорода. При интенсивном перемешивании воды (быстрое движение морского суда) процесс проходит преимущественно с кинетическим контролем, а при неподвижной воде – диффузионным.

Ватерлиния

Ватерлиния – зона периодического смачивания водой. Морская коррозия вблизи ватерлинии всегда носит усиленный характер. Это связано с облегченным доступом кислорода к поверхности (усиленной аэрацией поверхности металла); агрессивным влиянием брызг (на месте высохших брызг остаются кристаллики соли, которые препятствуют образованию защитных пленок); поверхностный слой морской воды более прогретый солнечными лучами и в условиях усиленной аэрации идет усиление коррозии металла.

Зазоры и щели

Наличие зазоров и щелей в металлоконструкции очень негативно влияет на морскую коррозию металла. Металл в щели плохо аэрирован и играет роль анода, проходит его усиленное растворение.

Прокатная окалина на поверхности металла

Наличие на поверхности металлоконструкции участков, неочищенных от прокатной окалины в десятки раз может ускорить протекание морской коррозии. На поверхности металла возникает гальванопара. В этом случае окалина является катодом, а чистый металл – анодом. Проходит анодное растворение металла. Такой же эффект наблюдается при наличии окрашенных участков (по отношению к неокрашенным) или при нарушении сплошности лакокрасочного покрытия.

Биологическая морская коррозия

Присутствие в морской воде различных микроорганизмов (бактерии, моллюски, кораллы и т.д.) обуславливает прохождение биокоррозии металла. Из-за их наростания и скопления на обивке днищ судов и других его частях, к поверхности плохо подходит кислород, возникают различные неровности, происходит разрушение поверхности, усиленное коррозионное разрушение в щелях и зазорах.

Иногда обрастание металлоконструкции микроорганизмами имеет и положительный характер. Образовавшийся слой может тормозить коррозионный процесс. Вот, например, обрастание поверхности стали мидиями значительно тормозит коррозию сплава. Это явление объясняется значительным потреблением мидиями кислорода.

Кроме значительного влияния микроорганизмов на коррозионный процесс, их значительное скопление на днище морского суда может несколько тормозить его ход, при этом необходимо увеличивать мощность двигателей.

Морской биокоррозии наиболее часто подвергаются стали, сплавы на никелевой, алюминиевой основе, свинец, олово сплавы на их основе.

Магний и цинк морской биокоррозии могут не подвергаться.

Наилучшим материалом для применения в условиях биокоррозии можно считать медь. Ее ионы токсичны и поверхность не обрастает.

Контактная коррозия

Очень часто в условиях морской атмосферы наблюдается контактная коррозия металлов. Отчасти это обусловлено хорошей электропроводностью морской воды.

Очень многие металлы, находясь в морской воде становятся катодами по отношению к стали.

Электрокоррозия

Электрокоррозия возникает в морской среде по двум причинам: во-первых, под действием блуждающих токов (особенно в районе порта и т.п.); во-вторых – в результате неправильных схем питания на судне или других объектах.

Механический фактор

В результате воздействия механического фактора возможна коррозионная усталость, коррозионная эрозия и кавитация.

Защита от морской коррозии

Наиболее распространенный метод защиты металлических изделий от морской коррозии – нанесение лакокрасочных материалов (ЛКМ).

В этих целях используются лакокрасочные материалы на основе битумов, фенолформальдегидной (краски АИШ), винилов (этинолевые лакокрасочные материалы), эпоксидной, каменноугольной основе. Содержание растворителей должно сводится к минимуму либо к нулю.

Лакокрасочные материалы хороши тем, что их достаточно просто наносить и при введении в их состав некоторых добавок можно добиться дополнительных защитных эффектов. Введение в краску окиси меди, окиси ртути или оловоорганических соединений делает краску необрастающей. Окись меди при вымывании с покрытия образует труднорастворимый комплекс. Эти вещества токсичны для микроорганизмов. Необрастающую краску наносят только на часть металлоконструкции, находящуюся в непосредственном контакте с водой.

При защите металла от морской коррозии поверхность сначала подвергают холодному фосфатированию, а только потом наносят толстослойное защитное лакокрасочное покрытие.

Лакокрасочные материалы на виниловой основе сами по себе обладают необрастающим эффектом.

Сплавы на основе алюминия защищают от морской коррозии при помощи оксидирования.

Для защиты от морской коррозии очень часто используют металлические защитные покрытия. Самое распространенное – цинковое. Толщина цинкового покрытия должна составлять около 150 – 200 мкм. Его можно использовать как самостоятельное защитное покрытие, так и в качестве основы под покраску.

Для обивки днища морского суда может использоваться легированный лантаном или цинком алюминий. Алюминиевое покрытие обладает высокой устойчивостью к коррозии, его можно применять в комплексе с лакокрасочным покрытием. Кроме того алюминиевые покрытия имеют повышенную стойкость к эрозии.

Для защиты стали от морской коррозии первым делом ее поверхность тщательно очищают от прокатной окалины. Для этого используют пескоструйную очистку, либо пламя, или же химическое травление. На обработанную и заранее подготовленную поверхность далее наносят лакокрасочное или металлическое покрытие.

Низкое легирование стали незначительно увеличивают ее стойкость в морской воде.

Высоколегированные хромоникелевые и хромистые стали в морской воде подвергаются местной язвенной и щелевой коррозии.

Высокой стойкостью к морской коррозии отличается медь и ее сплавы, особенно монель-металл, состоящий с 25 – 30% меди, а остальное – никель.

Широкое применение в практике защиты от морской коррозии нашла электрохимическая защита (протекторная или от внешнего источника тока).

Такая защита от морской коррозии может применятся самостоятельно или в комплексе с защитными покрытиями.

Особое место при защите конструкции от морской коррозии занимает рациональное конструирование. Правильный подбор материалов (во избежание контактной коррозии), защитных покрытий, равномерное распределение по всей конструкции напряжений и т.п. могут значительно продлить срок службы металлоконструкции.

Электрокоррозию можно предупредить, использую дренирование или же применяя специальные электросхемы.

Для защиты металлоконструкций от морской биологической коррозии применяют лакокрасочные материалы с биоцидными добавками. Также есть данные об использовании метода ультразвуковой защиты. Недостатком метода является большое потребление энергии и постепенное разрушение защищаемого материала. Суть метода состоит в воздействии на защищаемую поверхность ультразвуковых колебаний, имеющих частоту 23 – 27 кГц.

Для комплексной защиты стали от морской коррозии можно применять ультразвуковую и катодную защиту одновременно.


источники:

http://buzani.ru/zadachi/khimiya-shimanovich/951-zashchita-metallov-ot-korrozii-zadachi

http://www.okorrozii.com/morskayakorrozia.html