Кос 0 градусов равен уравнение

cosx = 0 (уравнение)

Найду корень уравнения: cosx = 0

Решение

Дано уравнение
$$\cos <\left(x \right)>= 0$$
— это простейшее тригонометрическое ур-ние

Получим:
$$\cos <\left(x \right)>= 0$$
Это ур-ние преобразуется в
$$x = \pi n + \operatorname<\left(0 \right)>$$
$$x = \pi n — \pi + \operatorname<\left(0 \right)>$$
Или
$$x = \pi n + \frac<\pi><2>$$
$$x = \pi n — \frac<\pi><2>$$
, где n — любое целое число

Косинус

Коcинус – одна из тригонометрических функций. Значение косинуса определяется для угла или для числа (в этом случае используют числовую окружность).

Аргумент и значение

Косинус острого угла

Косинус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к гипотенузе.

1) Пусть дан угол и нужно определить косинус этого угла.

2) Достроим на этом угле любой прямоугольный треугольник.

3) Измерив, нужные стороны, можем вычислить косинус.

Косинус острого угла больше \(0\) и меньше \(1\)

Если при решении задачи косинус острого угла получился больше 1 или отрицательным, то значит где-то в решении есть ошибка.

Косинус числа

Косинус числа можно определить с помощью числовой окружности – косинус числа равен абсциссе соответствующей точки на ней.

Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с Пи : \(\frac<π><2>\) , \(\frac<3π><4>\) , \(-2π\).

Например, для числа \(\frac<π><6>\) — косинус будет равен \(\frac<\sqrt<3>><2>\) . А для числа \(-\) \(\frac<3π><4>\) он будет равен \(-\) \(\frac<\sqrt<2>><2>\) (приблизительно \(-0,71\)).

Косинус для других часто встречающихся в практике чисел смотри в тригонометрической таблице .

Значение косинуса всегда лежит в пределах от \(-1\) до \(1\). При этом вычислен косинус может быть для абсолютно любого угла и числа.

Косинус любого угла

Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем \(360°\) (полный оборот). Как это делать — проще один раз увидеть, чем \(100\) раз услышать, поэтому смотрите картинку.

Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в \(150°\). Совмещаем точку О с центром окружности, а сторону ОК – с осью \(x\). После этого откладываем \(150°\) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

Если же нас интересует угол с градусной мерой, например, в \(-60°\) (угол КОВ), делаем также, но \(60°\) откладываем по часовой стрелке.

И, наконец, угол больше \(360°\) (угол КОС) — всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол \(405°\) отложен как \(360° + 45°\).

Несложно догадаться, что для откладывания угла, например, в \(960°\), надо сделать уже два оборота (\(360°+360°+240°\)), а для угла в \(2640°\) — целых семь.

Стоит запомнить, что:

Косинус прямого угла равен нулю. Косинус тупого угла — отрицателен.

Знаки косинуса по четвертям

С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по четвертям числовой (тригонометрической) окружности:

— там, где значения на оси от \(0\) до \(1\), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
— там, где значения на оси от \(0\) до \(-1\), косинус будет иметь знак минус (II и III четверти – фиолетовая область).

Пример. Определите знак \(\cos 1\).
Решение: Найдем \(1\) на тригонометрическом круге. Будем отталкиваться от того, что \(π=3,14\). Значит единица, примерно, в три раза ближе к нулю (точке «старта»).

Если провести перпендикуляр к оси косинусов, то станет очевидно, что \(\cos⁡1\) – положителен.
Ответ: плюс.

Связь с другими тригонометрическими функциями:

синусом того же угла (или числа): основным тригонометрическим тождеством \(\sin^2⁡x+\cos^2⁡x=1\)
тангенсом того же угла (или числа): формулой \(1+tg^2⁡x=\) \(\frac<1><\cos^2⁡x>\)
котангенсом и синусом того же угла (или числа): формулой \(ctgx=\) \(\frac<\cos><\sin⁡x>\)
Другие наиболее часто применяемые формулы смотри здесь .

Функция \(y=\cos\)

Если отложить по оси \(x\) углы в радианах, а по оси \(y\) — соответствующие этим углам значения косинуса, мы получим следующий график:

График данной функции называется косинусоида и обладает следующими свойствами:

— область определения – любое значение икса: \(D(\cos <⁡x>)=R\)
— область значений – от \(-1\) до \(1\) включительно: \(E(\cos )=[-1;1]\)
— четная: \(\cos⁡(-x)=\cos\)
— периодическая с периодом \(2π\): \(\cos⁡(x+2π)=\cos\)
— точки пересечения с осями координат:
ось абсцисс: \((\) \(\frac<π><2>\) \(+πn\),\(;0)\), где \(n ϵ Z\)
ось ординат: \((0;1)\)
— промежутки знакопостоянства:
функция положительна на интервалах: \((-\) \(\frac<π><2>\) \(+2πn;\) \(\frac<π><2>\) \(+2πn)\), где \(n ϵ Z\)
функция отрицательна на интервалах: \((\) \(\frac<π><2>\) \(+2πn;\) \(\frac<3π><2>\) \(+2πn)\), где \(n ϵ Z\)
— промежутки возрастания и убывания:
функция возрастает на интервалах: \((π+2πn;2π+2πn)\), где \(n ϵ Z\)
функция убывает на интервалах: \((2πn;π+2πn)\), где \(n ϵ Z\)
— максимумы и минимумы функции:
функция имеет максимальное значение \(y=1\) в точках \(x=2πn\), где \(n ϵ Z\)
функция имеет минимальное значение \(y=-1\) в точках \(x=π+2πn\), где \(n ϵ Z\).

Косинус угла. Таблица косинусов.

Косинус угла через градусы, минуты и секунды

Косинус угла через десятичную запись угла

Как найти угол зная косинус этого угла

У косинуса есть обратная тригонометрическая функция — arccos(y)=x

Пример cos(60°) = 1/2; arccos(1/2) = 60°

Определение косинуса

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Косинусом угла α называется абсцисса точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.


источники:

http://cos-cos.ru/math/185/

http://calc-best.ru/matematicheskie/trigonometriya/kosinus-ugla?n1=0&n2=1&n3=0&n4=1