Краевая задача для линейного уравнения

Краевая задача для линейного уравнения

4.11.2. Краевые задачи для линейного дифференциального уравнения второго порядка. Общий вид

В общем случае линейное дифференциальное уравнение второго порядка имеет вид:

Основные типы краевых условий, задаваемых на концах промежутка (изменения независимой переменной x ), на котором решается задача, имеют вид:

— условие первого рода

— условие второго рода

— условие третьего рода

На левой и правой границах промежутка могут быть заданы условия одного и того же или разного рода.

Если коэффициенты уравнения и правая часть — непрерывные функции, то краевая задача имеет единственное решение.

Дифференциальное уравнение вида (28) может быть преобразовано в уравнение в так называемой самосопряженной форме:

Для этого умножим обе части уравнения (28) на функцию . С учетом того, что

после умножения уравнение (28) можно записать в виде , т.е. в виде (29), где

4.11.3. Построение трехточечной разностной схемы 2-го порядка аппроксимации.

Рассмотрим линейное дифференциальное уравнение второго порядка в самосопряженной форме

на интервале с краевыми условиями первого рода:

Если , , то такая краевая задача описывает стационарное распределение тепла в стержне ( u(x) — температура в точке , — коэффициент теплопроводности). Задача имеет единственное решение, если — кусочно-непрерывные функции.

Введем на отрезке равномерную сетку

и запишем трехточечную разностную схему для краевой задачи (30)-(31) в прогоночном виде

где коэффициенты зависят от значений функций в узлах сетки, а также от шага .

Решение системы уравнений (32), (рассматриваемой вместе с граничными условиями) имеющей трехдиагональную матрицу коэффициентов, может быть найдено методом прогонки. Ранее этот метод описан в связи с построением кубического интерполяционного сплайна.
Формулы метода прогонки также приводятся ниже при рассмотрении вопроса о сходимости разностной схемы.

Выражения для коэффициентов разностной схемы должны обеспечивать аппроксимацию дифференциального уравнения разностной схемой с определенным порядком ее погрешности. Для получения таких выражений запишем разностную схему (32) в виде

где . Схема называется однородной, если ее коэффициенты во всех узлах сетки для любого линейного дифференциального уравнения вычисляются по одним и тем же правилам. Для однородной схемы удобна ее запись с использованием безиндексных обозначений:

Найдем погрешность аппроксимации схемы (34):

Подставляя эти выражения в (35) и группируя члены относительно функии u и ее производных, запишем погрешность аппроксимации в виде:

Условием для того, чтобы схема (34) имела второй порядок аппроксимации, будет выполнение соотношений:

Например, эти условия выполняются при

4.11.4. Сходимость разностной схемы.

Обозначим погрешность разностной схемы в узлах сетки: .

Пользуясь линейностью оператора в уравнении (34) можно установить, что погрешность в узлах сетки удовлетворяет разностной схеме:

где — погрешность аппроксимации.

Выведем оценку для погрешности в узлах сетки. Из формул (36) следует, что

поэтому схема (33) в прогоночном виде (32) запишется следующим образом:

Значения — решение схемы (39) можно найти, используя метод прогонки. Запишем соотношение

с неизвестными коэффициентами . Подставив в (39) соотношение , получим

Таким образом, для получаем рекуррентные формулы:

С учетом того, что соотношение (40) принимает вид

откуда получаем, что . Теперь можно вычислить все значения , , , по формулам (41), а затем спуститься «вниз» по i от N до 1 и найти все значения по формуле (40).

С учетом сделанного выше предположения относительно коэффициентов дифференциального уравнения (30)

, из выражения для коэффициента с следует неравенство:

, с учетом которого из неравенства (42) получаем

Тем самым из (41) следует, что .

Поскольку известно, что , то по индукции мы получаем, во-первых, решение схемы (38) в виде рекуррентных формул (40), (41) и во-вторых, справедливость неравенства

На этом основании из формулы (40) можно получить неравенство:

из которого с учетом, что , получаем неравенство: . Воспользуемся теперь рекуррентной формулой (41) для , умножив обе ее части на положительную величину :

Поскольку первый множитель справа — это коэффициент , величина которого меньше единицы, то, следовательно,

. На этом основании получаем:

с учетом, что . Наконец, поскольку , можно сделать вывод, что

Таким образом, для погрешности в узлах сетки &nbsp &nbsp можно записать неравенство

Так как , то переходя к нормам, получаем оценку погрешности решения

Такая оценка означает, что разностная схема (33) для краевой задачи (30)-(31) при указанных условиях на коэффициенты имеет второй порядок сходимости.

Прмечание. Здесь использована равномерная векторная норма

4.11.5. Краевые условия 2-го и 3-го рода.

Рассмотрим теперь уравнение (29) с краевыми условиями 2-го или 3-го рода :

Будем решать эту задачу с помощью трехточечной разностной схемы (33). Как показано в пункте 4.11.4, схема (33) имеет второй порядок аппроксимации.

Если для апроксимации условий (43) использовать простейшие односторонние двухточечные разностные производные, как в методе Эйлера, то краевые условия для разностной схемы запишутся в виде

Первое из этих условий позволяет, выражая y0 и сравнивая это выражение с формулой вида (40) для решения yi при i = 0, найти значения .
Второе из граничных условий вместе с формулой (40) при i = N позволяет определить значение yN .

Однако использованные выше разностные производные имеют первый порядок погрешности аппроксимации. Чтобы краевые условия не снижали порядок аппроксции разностной схемы (33), необходимо воспользоваться односторонними разностными аппроксимациями производных, имеющими второй порядок по h.
Например, для этих целей подходит разностная производная

где, как обычно, . Действительно, по формулам Тейлора

Аналогично, разностная производная на правой границе имеет вид:

При использовании таких формул разностные аппроксимации краевых условий принимают вид:

В этом случае для разрешения трехточечной схемы (33) также может быть использован метод прогонки.
Уравнение

при i = 1 составляет с краевым условием систему

из которой можно исключить , при этом система преобразуется в уравнение

с некоторыми вполне определенными коэффициентами .

На правом конце отрезка получаем систему

из которой можно найти , а затем и все остальные (по рекуррентным формулам (40)).

Краевые задачи

По этой ссылке вы найдёте полный курс лекций по математике:

предыдущих параграфах для уравнения п-го порядка рассматривалась задача с начальными условиями, в конторой все п условий задаются при одном и том же значении t = tQ. В краевой задаче задаются условия при двух (или более) значениях t. Такие условия называются краевыми. Здесь будут рассматриваться только линейные краевые задачи, в которых дифференциальное уравнение и краевые условия линейны. Левые части краевых условий — линейные комбинации значений искомой функции и ее производных в заданных точках ti9 а правые части — заданные постоянные числа.

Примеры линейных краевых условий: возможны и другие виды условий Если постоянная в правой части краевого условия равна нулю, то условие называется однородным, если не равна нулю — неоднородным. Для уравнения п-го порядка задаются п условий. В разных точках t< условия могут быть одного типа или разных типов. Краевая задача называется однородной, если дифференциальное уравнение и краевые условия линейны и однородны.

В отличие от задачи с начальными условиями краевая задача может иметь одно или много решений, а может и не иметь решений. Например, задача имеет единственное решение у = a sin*, а задача случае Ьф 0 не имеет решений (так как все решения уравнения, для которых у(0) = 0, имеют вид у = с sin t и при t = х они равны нулю), а в случае b = 0 имеет бесконечно много решений у = с sin t, с — любое. Теорема 13 (об альтернативе).

Рассмотрим уравнение Краевые задачи. (все a-(t) и f(t) непрерывны, aQ(t) Ф 0) с п линейными краевыми условиями. Возможны только два случая: или 1) задача имеет единственное решение при любых правых частях в уравнении и краевых условиях, или 2) однородная задача (левые части те же, а правые заменяются нулями) имеет бесконечно много решений, а неоднородная задача при некоторых правых частях имеет бесконечно много решений, а при всех других — не имеет решений.

Если данная задача однородна, то правые части алгебраических уравнений равны нулю. Возможны только два следующих случая. 1) Если детерминант системы не равен нулю, то система имеет единственное решение cp. cn при любых правых частях. Подставляя эти ср. сп в (59), получаем единственное решение краевой задачи. 2) Если детерминант системы равен нулю, то однородная система (т. е. при правых частях, равных нулю) имеет бесконечно много решений относительно ср. сп, а неоднородная система имеет решение не при любых правых частях.

Если она имеет решение, то она имеет бесконечно много решений, так как к этому решению можно прибавить любое решение однородной системы, умноженное на любую постоянную. Для любого набора постоянных ср. сп, удовлетворяющего системе, формула (59) дает решение краевой задачи. Для разных наборов сх. сп эти решения различны, так как функции у<9. уп линейно независимы. Из 1) и 2) следует утверждение теоремы. Пример 17.

Найти наименьшее из таких чисел Ь > О, что задача не имеет решений.

Решение примера. По теореме 13 задача (60) не имеет решений тогда, когда однородная задача у» + Ь2у = 0, у(0) = 0, у(1) = О имеет ненулевое решение. Функции, для которых у» + Ь2у = О, у(0) = 0, имеют вид у = с sin bt. Чтобы при с Ф 0 было у(1) = О, надо sin Ь — 0, то есть Ь = тг, 2х, Зх. При этих b имеем 2-й случай альтернативы, значит, при этих b задача (60) или не имеет решений, или имеет бесконечно много решений. Какая из этих возможностей осуществится, надо проверить.

Для каждого 8 = const функция y(t) = G(t, s) при t Ф s удовлетворяет уравнению Ly = 0. 2° При t = tx и t = t2 функция y(t) = G(t, 5) удовлетворяет краевым условиям из (61). 3° При t = 8 она непрерывна по ty а ее производная по t имеет скачок, равный 1 /а0(*), то есть Краевые задачи. Следующая теорема устанавливает условия существования функции Грина и дает способ ее построения.

Так как первому из краевых условий в (61) удовлетворяет только ур а второму — только у2, то из требований Г и 2° вытекает, что функция G должна иметь вид (63). Из требования 3° вытекают уравнения (64). Система (64) разрешима относительно а и Ь, так как ее детерминант равен (решения у,, у2 линейно независимы). Итак, при выполнении условий теоремы найдутся а и Ь, удовлетворяющие (64), а тогда функция (63) удовлетворяет требованиям Замечание.

Возможно вам будут полезны данные страницы:

Подставляем выражения для y(t) и j/(£) в краевые условия. Так как ^ удовлетворяет первому, а у2 — второму краевому условию, то y(t) удовлетворяет обоим условиям. Дифференцируя (66) еще раз, получаем Сумма внеинтефальных членов в силу . Умножая полученные выражения для и складывая, находим, что равно Так как Итак y(J) — решение задачи (61). i Пример 18.

Найти функцию Грина краевой задачи

Решение примера. Из однородного уравнения получаем Так как , то при задача (67) имеет только нулевое решение, то есть выполнена условие существования функции Грина. Функции cost удовлетворяют уравнению у+ уи условиям у. Поэтому согласно (63) Теперь из условия (62) или, что то же самое, (64) имеем Из этой системы находим а = — cos з, 6 = — sin з.

Теперь из (68) Задачи для упражнений: [12], § 13, № 764-771. |3«| Рассмотрим краевую задачу для уравнения с параметром А где Ly9a9p, 7, б те же, что в (61). Значения А, при которых задача (69) имеет ненулевое решение, называются собственными значениями этой задачи, а сами ненулевые решения — собственными функциями. При тех А, которые являются собственными значениями, имеет место второй случай альтернативы, а при остальных — первый. Пример 19.

Найти собственные значения и собственные функции задачи Решение примера. В силу теоремы 10 ненулевые решения этой задачи могут существовать только при А . Полагаем . Из уравнения и условия у(0) = 0 получаем у = с sin at. Из условия y(d) = 0 следует с sin a J = 0. Чтобы было у =2= 0, надо с.. Поэтому Числа Afc — собственные значения, а функции у = с sin ^ — собственные функции. Задачи для упражнений: [12], § 13, №782-785. Краевые задачи. | 4> | Для различных краевых задач исследовались условия, при которых задача имеет единственное решение.

Важное направление теории краевых задач — спектральная теория, изучающая свойства собственных значений и собственных функций. Выделен класс «самосопряженных» краевых задач, у которых собственные функции ортогональны в пространстве Ь2 на данном отрезке и доказано, что любую гладкую функцию на этом отрезке, удовлетворяющую краевым условиям этой задачи, можно разложить в сходящийся ряд по собственным функциям такой задачи, аналогичный ряду Фурье [30], гл. 7. Такие разложения используются, в частности, при решении различных задач для уравнений с частными производными методом разделения переменных

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

10.4. Краевая задача для дифференциального уравнения второго порядка

Как было сказано в п. 10.1, в силу основной теоремы су­ществования и единственности решения для уравнения второ­го порядка

Определена задача Коши, когда в точке Х = X0 заданы значения неизвестной функции и ее производной:

Если выполнены условия теоремы 10.1, то задача Коши (10.13), (10.14) однозначно определяет частное решение.

Однако существует и другой тип задач для дифференци­альных уравнений второго порядка — значения неизвестной функции задаются в двух разных точках. Иными словами, при решении уравнения (10.13) на интервале (А, B) рассмотрим Гра­ничные условия наиболее простого вида на концах интервала

В этом случае уравнение (10.13) совместно с условиями (10.14) называется Первой краевой задачей для уравнения второго по­рядка. Поскольку второе условие в (10.15) равносильно второ­му условию в (10.14), то указанная краевая задача может иметь единственное решение, т. е. определять единственным образом частное решение дифференциального уравнения (10.13), прохо­дящее через точки (X1, Y1), (X2, Y2). Так, для линейного диффе­ренциального уравнения второго порядка первая краевая зада­ча имеет решение, если определитель системы линейных алгеб­раических уравнений относительно произвольных постоянных C1 и С2

Реализующей краевые условия (10.15), отличен от нуля. Здесь в соответствии с теоремой 10.4 (X) — частное решение не­однородного уравнения, У1(х) и У2(х) — линейно независимые решения соответствующего однородного уравнения. В таком случае краевая задача с условиями (10.15) однозначно опреде­ляет частное решение дифференциального уравнения (10.8).

Пример 1. Найти частное решение уравнения

Удовлетворяющее краевым условиям

Общее решение этого уравнения было найдено в примере 4 и. 10.3:

Для отыскания частного решения, соответствующего данным краевым условиям, подставим это решение в эти краевые усло­вия. Получаем систему линейных уравнений относительно про­извольных постоянных С1 и С2

Нетрудно видеть, что определитель этой системы не равен ну­лю, т. е. данная краевая задача имеет решение. Вычитая из второго уравнения первое, умноженное на 2, получаем С2, а затем из первого уравнения — С1:

Отсюда решение данной краевой задачи как частное решение дифференциального уравнения, проходящее через точки (0, 1) и (ln 2, 2), имеет вид


источники:

http://natalibrilenova.ru/kraevyie-zadachi/

http://matica.org.ua/metodichki-i-knigi-po-matematike/osnovy-matematiki-i-ee-prilozheniia-v-ekonomicheskom-obrazovanii-krass-m-s-chuprynov-b-p/10-4-kraevaia-zadacha-dlia-differentcialnogo-uravneniia-vtorogo-poriadka