Краевая задача для обыкновенного дифференциального уравнения

Лекция 4. Краевые задачи для дифференциальных уравнений. Задача Штурма-Лиувилля.

Будем рассматривать однородное линейное уравнение второго порядка

Ly ≡ a2(x)y» + a1(x)y’ + a0(x)y = 0. Его можно записать по-другому:

(15)

Однородное уравнение Ly = 0 и неоднородное Ly = f, как известно, имеют бесконечное множество решений. На практике часто бывает нужно из множества решений выделить только одно. Для этого задают некоторые дополнительные условия. Если это начальные условия у(х0) = уo, y'(xo) = y1, то получают задачу Коши. Если задают дополнительные условия на концах некоторого отрезка, то получают задачу, которая называется краевой задачей. Условия, которые задаются на концах отрезка, называются краевыми условиями. Краевые условия иногда именуют также граничными условиями и тогда говорят о граничной задаче.
Мы будем задавать линейные краевые условия вида

(16)

где α1, α2, β1, β2, A, B — заданные числа, причем по крайней мере одно из чисел α1, α2, и одно из чисел β1, β2, отличны от нуля. Если в (16) хотя бы одно из чисел А и В не равно нулю, то краевые условия называют неоднородными. Если А = В = 0, то условия (16) называются однородными. Краевая задача называется однородной, если рассматривается однородное уравнение (15) Ly = 0 и однородные краевые условия (16). Решением краевой задачи называется такое решение дифференциального уравнения, которое удовлетворяет заданным краевым условиям. Заметим сразу, что однородная краевая задача всегда имеет решение у ≡ 0 (тривиальное решение).

Наряду с уравнением (15) рассмотрим уравнение

(17)

содержащее некоторый числовой параметр λ. Здесь функции р(х), q(x), r(x) действительные, а число λ может быть, вообще говоря, и комплексным. Краевая задача (17), (16) при А = В = 0 является однородной. Поэтому при любых λ она имеет тривиальное решение. Нас будут интересовать такие значения λ, при которых эта задача обладает не только тривиальными решениями.

Задача Штурма-Лиувилля. Найти те значения параметра λ, при которых уравнение (17) имеет нетривиальное решение, удовлетворяюшее однородным краевым условиям (16). В дальнейшем будем ее записывать в виде

λy = 0, l1y = 0, l2y = 0>.
Те значения параметра λ, при которых задача Штурма-Лиувилля имеет ненулевое решение, называются собственными значениями (собственными числами) задачи, а сами эти решения — собственными функциями. Задачу Штурма-Лиувилля называют также задачей на собственные значения. В силу однородности уравнения и краевых условий собственные функции задачи Штурма-Лиувилля определены с точностью до постоянного множителя. Это означает, что если y(х) -собственная функция при некотором значении λ, то произведение Cy(x), где С — произвольная постоянная, также является собственной функцией при том же значении параметра λ. В связи с этим часто в качестве собственной функции рассматривают нормированную функцию у <х), у которой ||у(х)|| = 1. Такая собственная функция определена, по существу, однозначно (с точностью до знака ±). Далее мы подробно изучим наиболее простой случай задачи Штурма-Лиувилля, когда уравнение имеет вид

y» + λy = 0.(18)

Из множества краевых условий вида (16) ограничимся тремя частными случаями:

1) краевые условия первого рода

y(a) = y(b) = 0,(19)

2) краевые условия второго рода

y'(a) = y'(b) = 0,(20)

3) краевые условия третьего рода

(21)

Общая задача Штурма-Лиувилля будет обладать свойствами, очень похожими на свойства в этих простых случаях, если на коэффициенты уравнения (17) наложить дополнительные условия: р(х), q(x), f(x) -непрерывные функции, причем р(х) имеет, кроме того, непрерывную производную на [а, b], р(х) > 0, q(x) ≥ 0.

Основные свойства собственных значений и собственных функций задачи Штурма-Лиувилля.

Лемма. Определитель Вронского двух собственных функций задачи Штурма-Лиувилля на концах отрезка [а, b] равен нулю.

Доказательство. Напомним, что определителем Вронского функций у = y1(x) и у = у2(x) называется определитель вида

Рассмотрим однородные краевые условия общего вида (16). Пусть у1(x) и у2(x) — две любые собственные функции. Это означает, что в точке x = а выполняются равенства

Числа α1, и α2 не могут одновременно равняться нулю. Значит, алгебраическая система двух однородных уравнений с двумя неизвестными имеет ненулевое решение. Это возможно только в том случае, когда определитель этой системы равен нулю:

Этот определитель совпадает с определителем Вронского в точке x = а, то есть W(a) = 0.

Аналогичные рассуждения, проведенные для точки x = b, показывают, что W(b) = 0.

Свойство 1. Две собственные функции задачи Штурма-Лиувилля, соответствующие одному и тому же собственному значению λ, линейно зависимые.

Доказательство. Так как собственные функции являются решениями одного и того же однородного уравнения (17) (по условию число λ одно), то в случае их линейной независимости определитель Вронского не равен нулю ни в одной точке отрезка [а, b]. Это противоречит только что доказанной лемме. Следовательно, y1(x) и у2(x) — линейно зависимые функции.

Свойство 2. Две собственные функции у1(x) и у2(x), соответствующие различным собственным значениям λ1 и λ21 ≠ λ2), на отрезке [а, b] ортогональны.

Доказательство этого свойства проведем для собственных функций такой задачи, в которой уравнение имеет вид (18). Составим определитель Вронского функций у1 и у2 и продифференцируем его:

Так как у1 и у2 — решения уравнения (18) при λ = λ1 и λ = λ2, соответственно, то получим

Проинтегрируем по отрезку [а, b] левую и правую части полученного равенства. С учетом леммы будем иметь

По условию λ1 — λ2 ≠0, следовательно
Функции y1(x) 0 и у2(х) 0, поэтому
Значит, y1(x) и у2(х) на отрезке [а, b] ортогональны.

Если уравнение, входящее в задачу Штурма-Лиувилля, имеет вид (17), где r(х) > 0 и r(x) 1, то под ортогональностью функций в этом случае подразумевают ортогональность с весом r(х): две функции y1(x) и у2(х) ортогональны на отрезке [а, b] с весом r(x), если

Под нормой функции ||у(x)|| в этом случае также подразумевают весовую норму:

Свойство 3. Собственные функции, соответствующие различным собственным значениям, образуют линейно независимую систему функций.

Это утверждение вытекает из попарной ортогональности собственных функций, соответствующих различным собственным значениям (см. свойство 2).

Свойство 4. Собственные значения задачи Штурма-Лиувилля действительные.

Доказательство. Предположим, что задача Штурма-Лиувилля λy = 0, l1y = 0, l2y = 0> имеет комплексное собственное значение λ = α + βi,β ≠ 0. Пусть ему соответствует собственная функция у(х) (вообще говоря, тоже комплекснозначная). Так как все коэффициенты уравнения и краевых условий имеют действительные значения, то

Здесь черта означает переход к комплексно сопряженному выражению. В нашем случае

Значит число также является собственным значением той же задачи Штурма-Лиувилля и ему соответствует собственная функция . Так как в силу свойства 2 функции y(x) и ортогональны на [а, b], то

Отсюда следует, что у(x) ≡ 0 на [а, b]. Значит ни одно комплексное число λ не может быть собственным значением.

Свойство 5. Пусть коэффициенты уравнения (17) удовлетворяют условиям: р(х), q(x), r(x) — непрерывные функции и, кроме того, р(х) имеет непрерывную производную на [а, b], р(х) > 0, q(x) > 0, r(х) > 0. Тогда задача Штурма-Лиувилля λ y = 0, l1 y = 0, l2 y = 0> имеет бесконечное число собственных значений λ 1, λ2, . λn, . Если краевые условия имеют вид (19) или (20), или (21), то собственные значения соответствующей задачи Штурма-Лиувилля удовлетворяют неравенствам

Теорема Стеклова.Всякая непрерывная функция f(x), удовлетворяющая однородным краевым условиям : l1f = 0 и l2f = 0 , и имеющая непрерывные производные до второго порядка на отрезке [а, b], разлагается на этом отрезке в сходящийся ряд Фурье по собственным функциям yn(х) задачи Штурма-Лиувилля λ y = 0, l1 y = 0, l2 y = 0> :

где коэффициенты Фурье Сn вычисляются по формулам:

Эта теорема применяется при решении уравнений математической физики методом Фурье.

Решение задач Штурма-Лиувилля

Вначале рассмотрим уравнение (18) y» + λy = 0. и краевые условия первого рода (19) y(a) = y(b) = 0. Для удобства будем считать, что a = 0 и b = l > 0. К такой задаче можно всегда свести данную задачу, если сделать замену переменной x’ = x — a, при этом вид уравнения не изменится.

Вид общего решения уравнения (18) зависит от значений параметра λ. Разберем три случая: 1) λ 0. В первом случае обозначим λ = — k 2 . Тогда характеристическое уравнение r 2 — k 2 = 0 будет иметь действительные различные корни r1 = k, r2 = — k: Поэтому, общее решение дифференциального уравнения запишется в виде y = C1e kx + C2e -kx . Подставим краевые условия в общее решение и получим

Определитель этой системы равен

Следовательно, система имеет только нулевое (тривиальное) решение C1 = C2 = 0. Значит, при λ 2 и получим характеристическое уравнение r 2 + k 2 = 0. Оно имеет комплексные корни r1 = ki и r2 = -ki и общее решение дифференциального уравнения в этом случае запишется в виде y = C1cos kx + C2sin kx. Подставим краевые условия в общее решение:

(22)

Для того, чтобы эта система имела нетривиальные решения, необходимо и достаточно, чтобы sin kl = 0. Следовательно kl = πn, то есть Так как то можно ограничиться только положительными значениями n = 1, 2, . . Таким образом, собственные значения данной задачи имеют вид При этих значениях алгебраическая система (22) имеет решения:C1 = 0, C2 — любое действительное число. Подставим эти значения в общее решение дифференциального уравнения и получим собственные функции задачи

Обычно постоянный множитель выбирают либо равным единице, либо из условия нормировки:

По тому же алгоритму решаются задачи Штурма-Лиувилля следующего вида:

(23)

и

(24)

Эти задачи так же, как и предыдущая, при λ 0 не имеют собственных значений. В случае λ > 0 общее решение уравнения записывается в виде y = C1cos kx +C2sin kx, где После подстановки у в краевые условия, получим:

а) для задачи (23)

Для того, чтобы эти системы уравнений имели нетривиальные решения, необходимо и достаточно, чтобы coskl = 0. Следовательно, то есть Отрицательные значения n можно не рассматривать, так как Таким образом, собственные значения у этих задач одинаковые

Собственные функции задачи (23) имеют вид А у задачи (24) они другие:

Некоторые отличия возникают при решении задачи Штурма-Лиувилля в случае краевых условий второго рода

y» + λy = 0, y'(0) = y'(l) = 0.(25)

Рассуждениями, аналогичными тем, которые проводились для краевых условий первого рода, можно показать, что задача (25) при λ 0. В этом случае, общее решение уравнения имеет вид y = C1cos kx + C2sin kx, Найдем производную этой функции и подставим в нее краевые условия (25):

Эта алгебраическая система имеет нетривиальные решения тогда и только тогда, когда, sinkl = 0 то есть kl = πn или Таким образом, числа также являются собственными значениями задачи. Собственные функции при этих значениях имеют вид . Окончательно, задача (25) имеет собственные значения и собственные функции

Для задачи Штурма-Лиувилля с краевыми условиями третьего рода (21) уже не удается получить собственные значения в явном виде. В качестве примера рассмотрим одну такую задачу, когда

y» + λy = 0, y'(0) = y(0), y'(l) = 0.(26)

При задача (26) не имеет собственных значений и собственных функций. Доказательство этого проводится так же, как и для краевых условий первого рода. При λ > 0 общее решение уравнения записывается в виде y = C1coskx + C2sinkx, где . После дифференцирования этой функции и подстановки её производной и самой функции в краевые условия (26) будем иметь:

или

(27)

Получившаяся алгебраическая система будет иметь нетривиальные решения только в том случае, когда

coskl — ksinkl = 0 или

ctgkl = k(28)

Уравнение (28) является трансцендентным уравнением относительно k. Оно не решается в явном виде. Однако, построив графики левой и правой частей уравнения (28), видно, что оно имеет бесконечно много решений (см. рис.13). Обозначим корни уравнения (28) через rn, n = 1,2, . . Тогда при


Рис.13

Численными методами можно найти приближенные значения rn. Из системы (27) при k = rn получим C1n = rnC2n , где C2n -произвольные постоянные. При этих значениях постоянных решения дифференциального уравнения будут иметь вид

Они являются собственными функциями краевой задачи (26) с собственными значениями

Численные методы решения краевых задач

Постановка задачи и основные положения

Рассмотрим двухточечные краевые задачи, часто встречающиеся в приложениях, например, при решении задач вариационного исчисления, оптимального управления, механики жидкости и газа и др. Пусть дано обыкновенное дифференциальное уравнение

и краевые условия

где [math]F \bigl(x,y,y’,\ldots,y^<(n)>\bigr);

j=\overline[/math] — функции указанных аргументов, заданные в некоторой области их изменения; [math]L[/math] и [math](n-L)[/math] — число условий на левом и правом концах отрезка [math][a,b][/math] соответственно. Общее количество условий равно порядку дифференциального уравнения. Требуется найти функцию [math]y=y(x)[/math] , которая на отрезке [math][a,b][/math] удовлетворяет уравнению (7.1), а на концах отрезка — краевым условиям (7.2).

Если уравнения (7.1),(7.2) линейны относительно искомой функции и ее производных, то краевая задача называется линейной.

Для простоты ограничимся частным случаем линейной краевой задачи для дифференциального уравнения второго порядка [math](n=2)[/math] , которая наиболее часто ставится в вычислительной практике и записывается в виде

(\Omega \equiv [a,b]),[/math]

где [math]p(x),\, q(x),\, f(x)\in C_2[a,b][/math] — заданные функции, а [math]\alpha_0,\,\alpha_1,\, \beta_0,\, \beta_1,\,A,\,B[/math] — заданные числа, 0,

j=0;1[/math] . Требуется найти функцию [math]y(x)[/math] , удовлетворяющую уравнению (7.3) и краевым условиям (7.4). Краевые условия при [math]\alpha_\ne0,

j=0;1[/math] , задают линейную связь между значениями искомого решения и его производной на концах отрезка [math][a,b][/math] .

В простейшем случае, когда [math]\beta_0=0,

\beta_1=0[/math] , краевые условия задают на концах отрезка [math][a,b][/math] только значения функции [math]y(a),\,y(b)[/math] . Такие функциональные условия называют краевыми условиями первого рода. В этом случае краевая задача называется первой краевой задачей.

В случае, когда [math]\alpha_0=0,

\alpha_1=0[/math] , т.е. на концах отрезка заданы только значения производных, краевые условия являются дифференциальными. Такие краевые условия называют условиями второго рода или «мягкими». Последнее название обусловлено тем, что они определяют на концах отрезка [math][a,b][/math] всего лишь наклоны интегральных кривых, а не значения функции [math]y(x)[/math] . В этом случае задача (7.3),(7.4) называется второй краевой задачей.

В общем случае, когда [math]\alpha_0[/math] и (или) [math]\alpha_1;

\beta_0[/math] и (или) [math]\beta_1[/math] не равны нулю, краевые условия носят функционально-дифференциальный характер и называются условиями третьего рода. Тогда задача (7.3),(7.4) называется третьей краевой задачей.

Например, условия [math]y(a)=A,

y(b)=B[/math] являются условиями первого рода. Геометрически это означает, что при решении первой краевой задачи требуется найти интегральную кривую уравнения (7.3), проходящую через данные точки [math](a,A),\, (b,B)[/math] (рис. 7.1,а). Условия [math]y'(a)=A,\, y'(b)=B[/math] являются условиями второго рода. Геометрически вторая краевая задача сводится к отысканию интегральной кривой уравнения, пересекающей прямые [math]x=a,

x=b[/math] под заданными углами [math]\alpha,\,\beta[/math] , где [math]\operatorname\alpha=A,

\operatorname\beta=B[/math] (рис. 7.1,6). Условия [math]y'(a)=A,

y(b)=B[/math] являются частным случаем краевых условий третьего рода, так как [math]\alpha_0=0,

\beta_1=0[/math] . Геометрически данная краевая задача сводится к отысканию интегральной кривой уравнения, проходящей через точку [math](b,B)[/math] и пересекающей прямую [math]x=a[/math] под данным углом [math]\alpha[/math] , где [math]\operatorname\alpha= A[/math] (рис. 7.1,в).

В общем случае краевая задача может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь несколько или бесконечно много решений.

Утверждение 7.1 (о существовании и единственности решения краевой задачи (7.3),(7.4)). Для того чтобы существовало единственное решение краевой задачи (7.3),(7.4), необходимо и достаточно, чтобы однородная краевая задача

имела только тривиальное решение [math]y(x)\equiv0[/math] .

Пример 7.1. Найти аналитическое решение следующих краевых задач:

0 \leqslant x \leqslant \frac<\pi><2>,

y\! \left(\frac<\pi><2>\right)-y’\! \left(\frac<\pi><2>\right)=2[/math] (третья краевая задача);

0 \leqslant x \leqslant 1,

y(1)=0[/math] (первая краевая задача).

Воспользуемся известной методикой отыскания общих решений дифференциальных уравнений. Подставив в них заданные краевые условия, получим аналитические решения данных краевых задач.

1. Найдем общее решение однородного уравнения [math]y»+y=0[/math] , одинакового для обеих рассматриваемых задач. Так как характеристическое уравнение [math]\lambda^2+1=0[/math] имеет комплексные сопряженные корни [math]\lambda_<1,2>=\pm i= \alpha\pm \beta i[/math] [math](\alpha=0,

\beta=1)[/math] , то общее решение будет

2. Частные решения неоднородных уравнений находятся методом подбора. Подставляя [math]y_<\text>(x)=C[/math] в уравнение [math]y»+y=1[/math] , а [math]y_<\text>(x)=Dx[/math] в уравнение [math]y»+y=-x[/math] , получаем [math]C=1,

D=-1[/math] . Поэтому [math]y_<\text>(x)=1[/math] в случае «а», [math]y_<\text>(x)=-x[/math] в случае «б».

3. Найдем общее решение неоднородного уравнения как сумму общего решения однородного уравнения и частного решения неоднородного уравнения:

а) [math]y(x)=C_1\cos x+C_2\sin x+1[/math] ; б) [math]y(x)=C_1\cos x+C_2\sin x-x[/math] .

4. Определим значения произвольных постоянных из краевых условий третьего рода (случай «а») и первого рода (случай «б»):

а) найдем [math]y'(x)=-C_1\sin x+C_2\cos x[/math] . Тогда

Отсюда [math]C_1=1[/math] и [math]y(x)=1+\cos x[/math] — решение краевой задачи «а»;

б) общее решение [math]y(x)=C_1\cos x+C_2\sin x-x[/math] и, следовательно, [math]y(0)=C_1=0,

y(1)=C_1\cos1+ C_2\sin1-1=0[/math] , отсюда [math]C_2= \frac<1><\sin1>[/math] и [math]y(x)=\frac<\sin x><\sin1>-x[/math] — решение краевой задачи «б». Таким образом, решение краевой задачи представляет собой такое частное решение, которое удовлетворяет краевым условиям.

Рассмотренный метод нахождения аналитического решения краевых задач применим для ограниченного класса задач. Поэтому в вычислительной практике используются численные и приближенно-аналитические методы, позволяющие найти приближенное решение краевых задач, точные аналитические решения которых не могут быть найдены.

Метод сеток

Рассмотрим линейную краевую задачу с краевыми условиями первого рода (первую краевую задачу):

где [math]p(x),q(x),f(x)\in C_2[a,b][/math] — заданные функции; [math]A,\,B[/math] — заданные числа.

Очевидно, любой отрезок [math][a,b][/math] , на котором ищется решение краевой задачи, можно привести к отрезку [math][0;1][/math] с помощью линейного преобразования [math]\widetilde= \frac[/math] . Действительно, тогда новая переменная [math]\widetilde\in [0;1][/math] . В результате без ограничения общности краевая задача (7.5) может быть решена сначала на отрезке [math][0;1][/math] , а затем это решение с помощью преобразования [math]x=a+(b-a)\cdot \widetilde[/math] может быть записано на отрезке [math][a,b][/math] . То же относится и к исследованию свойств полученного решения.

Утверждение 7.2 (о единственности решения краевой задачи (7.5)). Если функции [math]p(x),q(x),f(x)[/math] принадлежат классу [math]C_2[a,b],

q(x) \geqslant 0[/math] на [math][0;1][/math] , то краевая задача (7.5) имеет единственное решение [math]y(x)\in C_4[0;1][/math] .

Для решения задачи (7.5) применим метод сеток, получаемый путем аппроксимации первой и второй производных. Введем равномерную сетку (где [math]n[/math] — число отрезков разбиения)

Функции [math]p(x),q(x),f(x)[/math] заменяются их проекциями на сетку [math]\Omega_n[/math] , то есть [math]p(x)\to p(x_)=p_i,[/math] [math]q(x)\to q(x_)=q_i,[/math] [math]f(x)\to f(x_)= f_i,[/math] . Вместо точного решения [math]y(x)[/math] отыскивается некоторое приближение [math]\widehat_= \widehat(x_)\approx y(x_),

i=\overline<0,n>[/math] . Первая и вторая производные аппроксимируются на трехточечном шаблоне [math](x_,x_,x_)[/math] по формулам второго порядка (5.10),(5.14):

Краевые условия для этой задачи аппроксимируются точно, т.е. [math]y(a)[/math] и [math]y(b)[/math] заменяются на [math]\widehat_<0>[/math] и [math]\widehat_[/math] . После замены от дифференциальной задачи (7.5) переходим к разностной схеме:

представляющей собой систему алгебраических уравнений трехдиагонального вида:

\delta_=f_[/math] . Здесь система (7.6) записана для внутренних узлов сетки [math]\Omega_n[/math] . Она является трехдиагональной системой линейных алгебраических уравнений и решается методом прогонки.

1. Изложенный метод сеток допускает обобщение. Например, его можно применять для решения нелинейной краевой задачи:

где [math]F(x,y)[/math] — нелинейная по [math]y[/math] функция (в общем случае, который здесь не рассматривается, функция [math]F[/math] зависит также и от [math]y'[/math] ).

Рассуждая аналогично рассмотренному выше способу, перейдем к разностной задаче:

В силу нелинейности правой части полученная алгебраическая система является нелинейной и для ее решения нельзя использовать метод прогонки в том виде, в каком он изложен для линейной задачи. Поэтому для ее решения используем метод простых итераций, с помощью которого при фиксированном [math]k[/math] (номер итерации) система алгебраических уравнений (7.8) превращается в линейную, так как величины, входящие в правую часть системы, известны из предыдущей итерации. Действительно, для k-й итерации получается система (которая решается на каждой итерации методом прогонки)

Можно показать, что итерации сходятся при выполнении условия [math]q=\frac<1><8>(x_n-x_0)^2M_1 [math]M_1=\max_<[a,b]>\left|\frac<\partial F><\partial y>\right|[/math] с линейной скоростью.

2. Краевые условия второго и третьего рода в задаче, аналогичной (7.5), могут быть аппроксимированы несколькими способами.

Первый способ. Использование аппроксимационных формул (5.4) первого порядка

В силу первого порядка этих аппроксимаций метод сеток в этом случае также будет иметь первый порядок аппроксимации.

Второй способ. Применение формулы Тейлора и ее преобразование с использованием дифференциального уравнения. Таким способом может быть достигнут второй порядок аппроксимации.

Третий способ. Применение левосторонней (5.8) и правосторонней (5.9) формул, аппроксимирующих производные со вторым порядком:

3. Порядок аппроксимации схемы определяется минимальным порядком аппроксимации дифференциального уравнения и краевых условий.

Алгоритм применения метода сеток

1. Задать сетку [math]\Omega_n[/math] на отрезке [math][a,b][/math] или сформировать ее из условий достижения требуемой точности.

2. Используя аппроксимационные формулы (5.10),(5.14) и один из трех способов аппроксимации краевых условий (в случае, если они второго или третьего рода), перейти от исходной дифференциальной задачи к системе алгебраических уравнений (разностной схеме), неизвестными в которой являются величины, «близкие» к решению краевой задачи в узлах сетки.

3. Найти решение разностной задачи путем решения трехдиагональной системы уравнений и таким образом определить приближенное решение краевой задачи.

Пример 7.2. Найти приближенное решение краевой задачи [math]y»+y=1,

0 \leqslant x \leqslant \frac<\pi><2>,[/math] [math]y'(0)=0,[/math] [math]y\! \left(\frac<\pi><2>\right)-y’\! \left(\frac<\pi><2>\right)=2[/math] при [math]n=3[/math] , используя первый способ аппроксимации краевых условий. Записать разностные схемы для второго и третьего способов при произвольном [math]n[/math] .

В поставленной задаче

Для решения задачи воспользуемся методикой.

1. Так как [math]n=3[/math] , то сетка имеет вид [math]\Omega_3=\[/math] , где [math]x_=ih,

y\! \left(\frac<\pi><6>\right)=y_1,[/math] [math]y\! \left(\frac<\pi><3>\right)=y_2,[/math] [math]y\! \left(\frac<\pi><2>\right)=y_3[/math] . Будем искать приближенные значения [math]\widehat_0,\widehat_1, \widehat_2, \widehat_3[/math] . Проекции функций [math]p(x), q(x), f(x)[/math] на сетку имеют вид [math]p_=0,

2. Составим разностную схему. Согласно (7.6), для внутренних узлов сетки получаем

i=1;2[/math] или [math]\widehat_-(2-h^2)\widehat_+ \widehat_=h^2,

Применим первый способ аппроксимации краевых условий. По формуле (5.4) с учетом условия [math]y'(0)=0[/math] на левом конце имеем

На правом конце [math]y\! \left(\frac<\pi><2>\right)=y_3,

y’\! \left(\frac<\pi><2>\right)=y’_3[/math] , и по второй из формул (7.9) [math]\widehat\,’_<3>= \frac<\widehat_<3>-\widehat_<2>>[/math] . Тогда краевое условие [math]y\! \left(\frac<\pi><2>\right)-y’\! \left(\frac<\pi><2>\right)=2[/math] аппроксимируется выражением

В результате получаем разностную схему первого порядка аппроксимации (трехдиагональную систему линейных алгебраических уравнений)

Сравнивая первое уравнение этой системы с рекуррентным соотношением [math]\widehat_= P_\cdot \widehat_+ Q_[/math] метода прогонки, характеризующим обратный ход, получаем [math]P_0=1,

После этого вычисляются все последующие прогоночные коэффициенты по формулам:

Здесь [math]\alpha_,\beta_,\gamma_[/math] соответствуют коэффициентам левой части полученной алгебраической системы, а [math]\delta_[/math] — правой части.

Далее выполняется обратный ход: [math]\widehat_<3>=Q_3,

\widehat_<2>= P_2\widehat_<3>+ Q_2,

\widehat_<1>= P_1\widehat_<2>+ Q_1[/math] .

Результаты решения краевой задачи приведены в табл. 7.1, в которой последний столбец соответствует точному решению [math]y(x)=1+\cos x[/math] , найденному в примере 7.1.

7.1>>\\\hline i& \alpha_& \beta_& \gamma_& \delta_& P_& Q_& \widehat_& y(x) \\\hline 0& 0&-1,\!0000&-1& 0,\!00000& 1,\!00000& 0& 1,\!8648& 2,\!0000\\\hline 1& 1& 1,\!72584& 1& 0,\!27415& 1,\!37771&-0,\!37770& 1,\!8648& 1,\!8666\\\hline 2& 1& 1,\!72584& 1& 0,\!27415& 2,\!87240&-1,\!87242& 1,\!6277& 1,\!5000\\\hline 3& 1& 0,\!47640&-& 1,\!04200&-& 1,\!21853& 1,\!21853& 1,\!0000\\\hline \end[/math]

В силу того, что краевые условия аппроксимированы с первым порядком относительно [math]h[/math] , в данном случае получена разностная схема первого порядка, так как порядок аппроксимации схемы определяется минимальным порядком аппроксимации дифференциального уравнения и краевых условий.

Воспользуемся вторым способом аппроксимации краевых условий для построения разностной схемы второго порядка аппроксимации. Разложим [math]y(x)[/math] в точке [math]x=x_1[/math] относительно точки [math]x_0[/math] по формуле Тейлора:

Выразим из этого соотношения [math]y'(x_0)[/math] и подставим в него вместо [math]y»(x_0)[/math] выражение [math]y»(x_0)=1-y(x_0)=1-y_0[/math] , определяемое исходным дифференциальным уравнением:

Как показывает это соотношение, дифференциальное условие на левой границе аппроксимируется на двухточечном шаблоне [math](x_0,x_1)[/math] со вторым порядком аппроксимации двухточечным алгебраическим уравнением:

Аналогично получается двухточечное алгебраическое уравнение при / [math]i=n-1[/math] и [math]i=n[/math] . Разложение [math]y(x)[/math] в точке [math]x=x_[/math] относительно точки [math]x_n[/math] по формуле Тейлора имеет вид

Выражая отсюда [math]y'(x_n)[/math] с учетом связи [math]y»(x_n)=1-y(x_n)=1-y_n[/math] , следующей из исходного дифференциального уравнения, получаем

Подставим это выражение в граничное условие:

Таким образом, система линейных алгебраических уравнений в окончательном виде записывается следующим образом:

Эта трехдиагональная система, отличающаяся от полученной первым способом только первым и последним уравнениями, решается численно методом прогонки.

Применим третий способ аппроксимации краевых условий для построения разностной схемы второго порядка. Так, для крайней левой точки используется левосторонняя формула (5.8):

Тогда получается трехточечное алгебраическое уравнение:

Аппроксимация производной [math]y’\! \left(\frac<\pi><2>\right)[/math] в крайней правой точке по правосторонней формуле [math]\widehat\,’_= \frac<1> <2h>\bigl(\widehat_-4\widehat_+ 3\widehat_\bigr)[/math] приводит к трехточечному алгебраическому уравнению:

Тогда в этом случае получается следующая система линейных алгебраических уравнений:

Здесь [math]\widehat_<2>[/math] в первом уравнении и [math]\widehat_[/math] в последнем нарушают ее трехдиагональный характер. В этом случае система приводится к трехдиагональному виду путем исключения [math]\widehat_<2>[/math] и [math]\widehat_[/math] из первых двух и последних двух уравнений системы и после этого решается методом прогонки.

Методы минимизации невязки

Описываемые здесь методы относятся к приближенно-аналитическим и могут применяться при решении достаточно широкого класса задач. На основе одного из приближенно-аналитических методов (метода Галеркина) строится метод конечных элементов, излагаемый в разд. 7.5.

Рассмотрим линейную краевую задачу (7.3),(7.4). Ее решение будем искать в виде

где [math]\varphi_0(x), \varphi_1(x), \ldots, \varphi_m(x)[/math] — элементы заданной системы функций; [math]a_1,\ldots,a_m[/math] — неопределенные коэффициенты. Заданная система функций называется базисной, и ее элементы должны удовлетворять условиям:

а) [math]\varphi_(x)\in C_2[a,b],

б) при любом конечном [math]m[/math] функции [math]\varphi_1(x), \ldots, \varphi_m(x)[/math] линейно независимы на отрезке [math][a,b][/math] ;

в) [math]\varphi_0(x)[/math] удовлетворяет краевым условиям (7.4)

г) [math]\varphi_1(x), \ldots, \varphi_m(x)[/math] удовлетворяют условиям

называется невязкой . Она равна разности левой и правой частей уравнения (7.3), образующейся при подстановке [math]\widehat_(x)[/math] вместо [math]y(x)[/math] в дифференциальное уравнение, и характеризует степень отклонения функции [math]\widehat_(x)[/math] от точного решения краевой задачи. Если при некоторых значениях коэффициентов [math]a_1,\ldots,a_m[/math] невязка тождественно равна нулю на отрезке [math][a,b][/math] , а именно

то функция [math]\widehat_(x)[/math] совпадает с точным решением краевой задачи (7.3),(7.4), так как удовлетворяются и уравнение, и краевые условия.

Однако при решении краевых задач, как правило, не удается получить невязку тождественно равной нулю. Поэтому ставится задача: вычислить коэффициенты [math]a_1,\ldots,a_m[/math] таким образом, чтобы невязка в каком-либо смысле стала меньшей. Полученные в результате коэффициенты определяют приближенное решение (7.11).

Выражение для невязки [math]\varepsilon(x; a_1,\ldots, a_m)[/math] с учетом (7.11) удобно записывать в следующей эквивалентной форме:

где [math]L\widehat_\equiv \widehat\,»_(x)+ p(x)\widehat\,’_(x)-q(x) \widehat_(x),

L[/math] — линейный оператор задачи (7.3),(7.4) (выполняются равенства [math]L(y+z)= Ly+Lz,[/math] [math]L(Cy)=C\cdot Ly[/math] для любых [math]y,\,z[/math] и постоянной [math]C[/math] ).

Рассмотрим различные методы, минимизирующие невязку .

А. Метод коллокации. На интервале [math](a,b)[/math] задаются т точек [math]x_1,\ldots, x_n[/math] (точек коллокации) и требуется, чтобы в каждой из них невязка (7.14) обращалась в нуль:

С учетом (7.16) эта система принимает вид

Если полученная система [math]m[/math] линейных уравнений совместна, то из нее определяются коэффициенты [math]a_1,\ldots, a_m[/math] , которые затем подставляются в (7.11).

Б. Метод наименьших квадратов (непрерывный вариант). Неизвестные коэффициенты [math]a_1,\ldots, a_m[/math] должны обеспечивать минимум интеграла от квадрата невязки:

Для решения задачи применяются необходимые условия безусловного экстремум:

Подставляя (7.16) в (7.19), получаем систему [math]m[/math] линейных алгебраических уравнений для нахождения коэффициентов [math]a_1,\ldots, a_m\colon[/math]

В. Метод наименьших квадратов (дискретный вариант). Неизвестные коэффициенты [math]a_1,\ldots,a_m[/math] должны обеспечивать минимум суммы квадратов значений невязки в заданном наборе точек [math]x_1,\ldots,x_n;

n \geqslant m[/math] , то есть [math]x_\in (a,b),

Для решения задачи применяются необходимые условия безусловного экстремума

Отсюда следует система [math]m[/math] линейных уравнений для нахождения коэффициентов [math]a_1,\ldots,a_m[/math] , которая по форме записи совпадает с (7.20), но скалярное произведение определяется по формуле [math]\textstyle<(f,g)= \sum\limits_^ f(x_)g(x_)>[/math] .

Замечание. При [math]n=m[/math] результаты, полученные точечным методом наименьших квадратов и методом коллокации, совпадают. В этом случае точки [math]x_1,\ldots, x_n[/math] являются точками коллокации.

Г. Метод моментов (взвешенных невязок). Неизвестные коэффициенты ах. ат находятся из условия равенства нулю /и моментов невязки:

j=\overline<1,m>[/math] — функции, удовлетворяющие условиям:

б) функции [math]\psi_(x)[/math] являются элементами системы степеней [math]x[/math] или системы тригонометрических функций.

j=\overline<1,m>[/math] называются весовыми, а условие (7.22) является условием ортогональности невязки к весовым функциям.

Д. Метод Галсркина. Он является частным случаем метода моментов, когда в качестве весовых функций используются базисные. Коэффициенты [math]a_1,\ldots,a_m[/math] находятся из условия ортогональности функций базисной системы [math]\varphi_1(x),\ldots, \varphi_(x)[/math] к невязке:

Отсюда следует система [math]m[/math] линейных уравнений для нахождения коэффициентов:

Известно, что при достаточно большом [math]m[/math] условие (7.23) обеспечивает малость невязки в среднем.

Алгоритм применения методов минимизации невязки

1. В выражении (7.11) выбрать систему базисных функций, задать число [math]m[/math] в зависимости от требуемой точности.

2. Найти коэффициенты [math]a_1,\ldots,a_m[/math] путем решения одной из систем алгебраических уравнений (7.18),(7.20),(7.24) в зависимости от выбранного метода.

3. Выписать приближенное решение краевой задачи по формуле (7.11).

Пример 7.3. Найти приближенное решение краевой задачи [math]y»+y=-x,

0 \leqslant x \leqslant 1,[/math] [math]y(0)=0,

y(1)=0[/math] методом коллокации, интегральным методом наименьших квадратов, методом Галеркина

В поставленной задаче

Точное решение найдено в примере 7.1.

Воспользуемся сначала методом коллокации.

1. Зададим [math]m=2[/math] и будем искать решение в виде

где [math]\varphi_0(x)\equiv0[/math] (эта функция удовлетворяет каждому из краевых условий, т.е. [math]\varphi_0(0)=0,

\varphi_0(1)=0[/math] ), функции [math]\varphi_1(x)= x(1-x),

\varphi_2(x)= x^2(1-x)[/math] . Функции [math]\varphi_1(x),\, \varphi_2(x)[/math] линейно независимые, дважды непрерывно дифференцируемые и удовлетворяют условию (7.13). Действительно,

Таким образом, решение краевой задачи ищется в форме

2. Так как [math]m=2[/math] и [math]\varphi_0(x)\equiv 0[/math] , то система (7.18) имеет вид

Выберем узлы коллокации: [math]x_1=1\!\!\not<\phantom<|>>\,4,

Таким образом, имеем линейную систему относительно [math]a_1[/math] и [math]a_2\colon[/math]

3. Приближенное решение задачи: [math]\widehat_2(x)= \frac<217>(42+40x)[/math] .

Решим теперь задачу методом наименьших квадратов (см. непрерывный вариант).

1. Решение краевой задачи ищется в форме [math]\widehat_2(x)= a_1\cdot x(1-x)+ a_2\cdot x^2(1-x)[/math] .

2. Так как [math]f(x)=-x,

\varphi_0(x)\equiv 0[/math] , то система (7.20) имеет вид

Итак, имеем линейную систему относительно [math]a_1[/math] и [math]a_2\colon[/math]

Приближенное решение задачи: [math]\widehat_2(x)=0,\!1875419x(1-x)+ 0,\!1694707x^2(1-x).[/math] .

Решим задачу методом Галеркина.

1. Пусть сначала [math]m=1[/math] . Решение ищется в форме [math]\widehat_1(x)= a_1\cdot x(1-x)[/math] .

2. Тогда система (7.24) преобразуется к виду

Так как [math]\varphi_1(x)= x(1-x),

L\varphi_1(x)= \varphi»_1(x)+ \varphi_1(x)=-2+x(1-x)[/math] , получаем

После вычисления интегралов имеем уравнение [math]-\frac<3><10>\,a_1=-\frac<1><12>[/math] , откуда [math]a_1=\frac<5><18>[/math] .

3. Приближенное решение краевой задачи: [math]\widehat_1(x)=\frac<5><18>\,x(1-x)[/math] . Пусть теперь [math]m=2[/math] .

1. Решение краевой задачи ищется в форме [math]\widehat_2(x)=a_1\cdot x(1-x)+ a_2\cdot x^2(1-x)[/math] .

2. Тогда система (7.24) имеет вид

Вычисляя интегралы, находим

3. Приближенное решение краевой задачи: [math]\widehat_2(x)= x(1-x)\! \left(\frac<71><369>+ \frac<7><41>\,x\right)[/math] .

Сопоставим полученные решения с точным (табл. 7.2).

7.2>>\\\hline x& y_<\text>& y_<\text>& y_<\text>& \text \\\hline 0,\!25& 0,\!045& 0,\!04311& 0,\!0440& 0,\!044014 \\\hline 0,\!50& 0,\!071& 0,\!06807& 0,\!0698& 0,\!069747 \\\hline 0,\!75& 0,\!062& 0,\!05899& 0,\!0600& 0,\!060050 \\\hline \end[/math]

Очевидно, метод Галеркина дал более точный результат.

Пример 7.4. Найти приближенное решение краевой задачи [math]y»+2xy’-2y=2x^2,

0 \leqslant x \leqslant 1,[/math] [math]y'(0)=-2,

y(1)+y'(1)=0[/math] методом Галеркина.

В поставленной задаче

1. Зададим [math]m=2[/math] и подберем функции [math]\varphi_0(x),\, \varphi_1(x),\, \varphi_2(x)[/math] , используя систему [math]1,x,x^2,\ldots[/math] . Функция [math]\varphi_0(x)[/math] должна удовлетворять условиям (7.12):

Пусть [math]\varphi_0(x)=b+cx[/math] , где [math]b,\,c[/math] — неопределенные коэффициенты. Тогда

Отсюда [math]b=4[/math] и [math]\varphi_0(x)=4-2x[/math] .

Функции [math]\varphi_1(x),\, \varphi_2(x)[/math] должны удовлетворять условиям (7.13):

Первое условие выполняется для функций вида [math]\varphi_= x^+b_[/math] . Значения [math]b_[/math] находятся из второго условия [math]1+b_+j+1=0[/math] , откуда [math]b_=-j-2[/math] . Тогда получаем [math]\varphi_1(x)=x^2-3,

Таким образом, решение краевой задачи ищется в форме

2. Тогда система (7.24) имеет вид

3. Приближенное решение краевой задачи [math]\widehat_2(x)= x^2-2x+1[/math] .

Методы сведения краевой задачи к задаче Коши

Метод стрельбы. Суть этого метода заключается в сведении решения краевой задачи к многократному решению задачи Коши. Принцип построения метода стрельбы рассмотрим на примере нелинейной краевой задачи:

где [math]f(x,y,y’)[/math] — нелинейная функция, обусловливающая нелинейность дифференциального уравнения (7.25).

При введении новой переменой [math]z=y'[/math] уравнение (7.25) записывается в нормальной форме Коши, а краевые условия видоизменяются:

где [math]\eta=y'(a)=\operatorname\alpha[/math] — параметр, равный тангенсу угла наклона интегральной кривой в точке [math]x=a[/math] . Угол [math]\alpha[/math] (параметр [math]\eta[/math] ) в процессе многократного решения краевой задачи должен принять такое значение, чтобы интегральная кривая «попала в цель», т.е. в точку [math](b,B)[/math] (рис.7.2 ,а). В общем случае полученное при некотором значении [math]\eta[/math] решение [math]y(x,\eta)[/math] не будет удовлетворять условию [math]y(b,\eta)=B[/math] на правом конце отрезка.

Следовательно, требуется найти такое значение параметра [math]\eta[/math] , чтобы оно было корнем нелинейного уравнения [math]\Phi(\eta)= y(b,n)-B=0[/math] . Для решения этого уравнения, как правило, используются методы половинного деления или секущих. В случае использования метода половинного деления сначала делают «пробные» выстрелы при выбранных наугад или в соответствии с некоторым алгоритмом значениях [math]\eta[/math] до тех пор, пока среди значений [math]\Phi(\eta)[/math] не окажется двух противоположных по знаку. Им соответствует начальный интервал неопределенности, который далее последовательно сокращается путем деления пополам. При применении метода секущих используется формула

где [math]\eta^<(0)>,\,\eta^<(1)>[/math] — начальные значения параметра, [math]k[/math] — номер итерации. Итерации прекращаются при выполнении условия окончания [math]\bigl|\Phi(\eta^<(k)>)\bigr| \leqslant \varepsilon[/math] или [math]\bigl|\eta^<(k+1)>-\eta^<(k)>\bigr| \leqslant \varepsilon[/math] с некоторым положительным [math]\varepsilon[/math] , характеризующим точность решения задачи.

Замечание. Точность решения краевой задачи зависит не только от точности определения параметра [math]\eta[/math] , но также и от точности решения соответствующей задачи Коши. Поэтому одновременно с уточнением параметра [math]\eta[/math] рекомендуется уменьшать шаг при решении задачи Коши, либо выбирать более точный метод.

Рассмотрим применение метода стрельбы для решения линейной краевой задачи (7.3),(7.4):

10.4. Краевая задача для дифференциального уравнения второго порядка

Как было сказано в п. 10.1, в силу основной теоремы су­ществования и единственности решения для уравнения второ­го порядка

Определена задача Коши, когда в точке Х = X0 заданы значения неизвестной функции и ее производной:

Если выполнены условия теоремы 10.1, то задача Коши (10.13), (10.14) однозначно определяет частное решение.

Однако существует и другой тип задач для дифференци­альных уравнений второго порядка — значения неизвестной функции задаются в двух разных точках. Иными словами, при решении уравнения (10.13) на интервале (А, B) рассмотрим Гра­ничные условия наиболее простого вида на концах интервала

В этом случае уравнение (10.13) совместно с условиями (10.14) называется Первой краевой задачей для уравнения второго по­рядка. Поскольку второе условие в (10.15) равносильно второ­му условию в (10.14), то указанная краевая задача может иметь единственное решение, т. е. определять единственным образом частное решение дифференциального уравнения (10.13), прохо­дящее через точки (X1, Y1), (X2, Y2). Так, для линейного диффе­ренциального уравнения второго порядка первая краевая зада­ча имеет решение, если определитель системы линейных алгеб­раических уравнений относительно произвольных постоянных C1 и С2

Реализующей краевые условия (10.15), отличен от нуля. Здесь в соответствии с теоремой 10.4 (X) — частное решение не­однородного уравнения, У1(х) и У2(х) — линейно независимые решения соответствующего однородного уравнения. В таком случае краевая задача с условиями (10.15) однозначно опреде­ляет частное решение дифференциального уравнения (10.8).

Пример 1. Найти частное решение уравнения

Удовлетворяющее краевым условиям

Общее решение этого уравнения было найдено в примере 4 и. 10.3:

Для отыскания частного решения, соответствующего данным краевым условиям, подставим это решение в эти краевые усло­вия. Получаем систему линейных уравнений относительно про­извольных постоянных С1 и С2

Нетрудно видеть, что определитель этой системы не равен ну­лю, т. е. данная краевая задача имеет решение. Вычитая из второго уравнения первое, умноженное на 2, получаем С2, а затем из первого уравнения — С1:

Отсюда решение данной краевой задачи как частное решение дифференциального уравнения, проходящее через точки (0, 1) и (ln 2, 2), имеет вид


источники:

http://mathhelpplanet.com/static.php?p=chislennyye-metody-resheniya-krayevykh-zadach

http://matica.org.ua/metodichki-i-knigi-po-matematike/osnovy-matematiki-i-ee-prilozheniia-v-ekonomicheskom-obrazovanii-krass-m-s-chuprynov-b-p/10-4-kraevaia-zadacha-dlia-differentcialnogo-uravneniia-vtorogo-poriadka