Краевые задачи дифференциальных уравнений в частных производных

Примеры по дифференциальным уравнениям в частных производных

Немного теории

Дифференциальным уравнением с частными производными (ДУ с ЧП) называется уравнение относительно неизвестной функции нескольких переменных (ФНП) и ее частных производных. Наивысший порядок частных производных (существенно входящих в уравнение) называется порядком этого уравнения.

ДУ с ЧП называется линейным (ЛДУ с ЧП), если неизвестная функция и ее производные входят в это ДУ линейно (в первой степени).

В этом разделе вы найдете подробно решенные задачи по темам: классификация и приведение к каноническому виду ДУ с ЧП второго порядка с двумя переменными, определение типа уравнения, решение уравнений и систем ДУ в ЧП.

ДУ с ЧП находят широкое применение в прикладных науках: квантовая механика, электродинамика, термодинамика, теория теплои массопереноса и др. при математическом описании и моделировании различных физических процессов. Поэтому такие уравнения изучаются под общим названием уравнений математической физики (примеры решений 16 задач).

Приведение к каноническому виду

Задача 1. Привести к каноническому виду уравнение

Задача 2. Привести уравнение к каноническому виду.

Задача 3. Найти общее решение уравнения, приведя его к каноническому виду:

Решение ДУ в ЧП

Задача 4. Решить уравнение Пфаффа

$$ z^2 dx +zdy +(3zx +2y)dz=0. $$

Задача 5. Решить задачу Коши для уравнения в частных производных

$$ u_-2\Delta u =(x^2+y^2+z^2)t; \quad u(t=0)=xyz, u_t(t=0)=x-y. $$

Задача 6. Найти общее решение уравнения в частных производных

Задача 7. Найти общее решение уравнения в частных производных первого порядка.

$$ xy u_x +(x-2u)u_y = yu. $$

Задача 8. Найти решение задачи Коши для уравнения в частных производных

$$ y u_x -xy u_y=2xu, \quad u(x+y=2)=1/y. $$

Задача 9. Решить систему дифференциальных уравнений в частных производных

Разные задачи на исследование ДУ в ЧП

Задача 10. Найти поверхность, удовлетворяющую данному уравнению и проходящую через данную линию

Задача 11. Найти области гиперболичности, эллиптичности и параболичности уравнения и исследовать их зависимость от $l$, где $l$ – числовой параметр.

Задача 12. Найти функцию, гармоническую внутри круга радиуса $R$ c центром в начале координат и такую, что

Помощь с решением ДУ в ЧП

Если вам нужна помощь с решением задач и контрольных по дифференциальным уравнениям (и другим разделам математического анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

Краевые задачи дифференциальных уравнений в частных производных

ГЛАВА 12

  • 12.1. Краевые задачи для ОДУ
    • 12.1.1. О постановке краевых задач
    • 12.1.2. Алгоритм стрельбы*
    • 12.1.3. Решение двухточечных краевых задач
    • 12.1.4. Решение краевых задач с дополнительным условием в промежуточной точке
  • 12.2. Задачи на собственные значения для ОДУ
  • 12.3. Разностные схемы для ОДУ*
    • 12.3.1. О разностном методе решения ОДУ*
    • 12.3.2. Жесткие краевые задачи*
  • 12.4. Уравнения в частных производных
    • 12.4.1. Решение уравнения Пуассона
    • 12.4.2. Разностные схемы*
    • 12.4.3. Решение других уравнений в частных производных с помощью функции relax

В этой главе рассматриваются краевые задачи для обыкновенных дифференциальных уравнений (ОДУ) и для уравнений в частных производных.Средства MathCAD позволяют решать краевые задачи для систем ОДУ,в которых часть граничных условий поставлена в начальной точке интервала, а остальная часть - в его конечной точке (см. разд. 12.1). Также возможно решать уравнения с граничными условиями, поставленными в некоторойвнутренней точке. Для решения краевых задач в MathCAD предусмотренысоответствующие встроенные функции, реализующие алгоритм пристрелки (см. разд. 12.1.2).
Краевые задачи во множестве практических приложений часто зависят отнекоторого числового параметра. При этом решение существует не для всехего значений, а лишь для счетного их числа. Такие задачи называют задачами на собственные значения (см. разд. 12.2).
Несмотря на то, что, в отличие от задач Коши для ОДУ, в MathCAD не предусмотрены встроенные функции для решения жестких краевых задач, с нимивсе-таки можно справиться, применив программирование разностных схем (см. разд. 12.3). Возможные варианты реализации разностных схем приведеныи для решения некоторых краевых задач для дифференциальных уравненийв частных производных. Кроме того, с некоторыми частными случаями уравнений в частных производных - например, уравнением Пуассона - можносправиться и с помощью встроенных функций MathCAD (см. разд. 12.4).
12.1. Краевые задачи для ОДУ
Постановка краевых задач для ОДУ отличается от задач Коши, рассмотренных в главе 11, тем, что граничные условия для них ставятся не в одной начальной точке, а на обеих границах расчетного интервала. Если имеется система N обыкновенных дифференциальных уравнений первого порядка, точасть из N условий может быть поставлена на одной границе интервала, аоставшиеся условия - на противоположной границе.

Примечание
Дифференциальные уравнения высших порядков можно свести к эквивалентной системе ОДУ первого порядка (см. гл. 11).

Рис. 12.1. Модель для постановки краевой задачи
Полученную задачу называют краевой (boundary value problem), поскольку условия поставлены не на одной, а на обеих границах интервала (0,1).И, в связи с этим, их не решить методами предыдущей главы, предназначенными для задач с начальными условиями. Далее для показа возможностей MathCAD будем использовать этот пример с R=I и конкретным видомa(x)=const=i и г(x)=const=o.i, описывающим случай изотропного (не зависящего от координаты х) рассеяния.

Примечание
Модель рис. 12.1 привела к краевой задаче для системы линейных ОДУ. Онаимеет аналитическое решение в виде комбинации экспонент. Более сложные, нелинейные задачи, возможно решить только численно. Нетрудно сообразить,что модель станет нелинейной, если сделать коэффициенты ослабления ирассеяния зависящими от интенсивности излучения. Физически это будет соответствовать изменению оптических свойств среды под действием мощного излучения.

Примечание
Модель встречных световых пучков привела нас к системе уравнений (1), в которые входят производные только по одной переменной х. Если бы мы сталирассматривать более сложные эффекты рассеяния в стороны (а не только вперед и назад), то в уравнениях появились бы частные производные по другимпространственным переменным у и z. В этом случае получилась бы краеваязадача для уравнений в частных производных, решение которой во много раз сложнее ОДУ.

Примечание
Начальное значение фактически является параметром численного метода ипоэтому может сильно повлиять на решение краевой задачи.

В следующей строке листинга векторной функции ioad(x,z) присваиваютсялевые граничные условия. Эта функция аналогична векторной переменной,определяющей начальные условия для встроенных функций, решающих задачи Коши. Отличие заключается в записи недостающих условий. Вместоконкретных чисел на соответствующих местах пишутся имена искомых элементов вектора z. В нашем случае вместо второго начального условия стоитаргумент z 0 функции load. Первый аргумент функции load - это точка, вкоторой ставится левое граничное условие. Ее конкретное значение определяется непосредственно в списке аргументов функции sbval.
Следующая строка листинга определяет правое граничное условие, для введения которого используется функция score(х,у). Оно записывается точнотак же, как система уравнений в функции о. Аргумент х функции score аналогичен функции load и нужен для тех случаев, когда граничное условиеявно зависит от координаты х. Вектор score должен состоять из такого жечисла элементов, что и вектор z.
Реализованный в функции sbval алгоритм стрельбы ищет недостающие начальные условия таким образом, чтобы решение полученной задачи Кошиделало функцию score (х, у) как можно ближе к-нулю. Как видно из листинга, результат применения sbval для интервала (0,1) присваивается векторной переменной п. Этот вектор похож на вектор z, только в нем содержатся искомые начальные условия вместо приближенных начальных значений, заданных в z. Вектор и содержит, как и z, всего один элемент I1.С его помощью можно определить решение краевой задачи у(х) (последняястрока листинга). Тем самым, функция sbval сводит решение краевых задачк задачам Коши. График решения краевой задачи показан на рис. 12.3.

Рис. 12.3. Решение краевой задачи

Примечание
Еще один пример решения краевых задач с разрывными коэффициентами ОДУ приведен в справочной системе MathCAD.

Рис. 12.5. Решение краевой задачи с разрывом в xf=0.5 (листинги 12.3-12.4)
Ради справедливости необходимо заметить, что разобранную краевую задачулегко решить и с помощью функции sbval, заменив в листинге 12.2 зависимость а(х) на третью строку листинга 12.3. В этом случае листинг 12.2 даст в точности тот же ответ, что показан на рис. 12.5. Однако в определенныхслучаях (в том числе из соображений быстроты расчетов) удобнее использовать функцию bvalfit, т. е. вести пристрелку с обеих границ интервала.

Совет
Если вы имеете дело с подобными уравнениями, попробуйте сначала решитьих как обычную краевую задачу с помощью более надежной и легкой в применении функции sbval.

Примечание
Примеры решения нескольких задач на собственные значения можно найти в Центре Ресурсов MathCAD.

Рис. 12.7. Сетка, покрывающая расчетный интервал

Примечание
Существует множество способов аппроксимации дифференциальных уравнений разностными. От выбора конкретного варианта зависит не только простота,быстрота и удобство вычислений, но и сама возможность получения правильного ответа.

Получилась система (по числу шагов) 2-(м-1) разностных линейных алгебраических уравнений с 2-N неизвестными YI и yi. Для того чтобы она имелаединственное решение, надо дополнить число уравнений до 2-м. Это можносделать, записав в разностном виде оба граничных условия:
Y 0 =1O, y N =R-Y N .
Сформированная полная система алгебраических уравнений называется разностной схемой, аппроксимирующей исходную краевую задачу. Обратитевнимание, что правые части разностных уравнений системы на каждомшаге записаны для левой границы шага. Такие разностные схемы называют явными, т. к. все значения Y I+ I и y i+ i находятся в левой части уравнений. Полученную явную разностную схему легко записать в матричной форме
A. Z =B,
где z - неизвестный вектор, получающийся объединением векторов Y и у.Решив систему (3), мы получим решение краевой задачи.

Примечание
На самом деле, все несколько сложнее, поскольку, вообще говоря, необходимоеще доказать, что, во-первых, разностная схема действительно аппроксимирует дифференциальные уравнения и, во-вторых, при м-*» разностное решениедействительно сходится к дифференциальному.

Процесс решения системы разностных уравнений называют также реализацией разностной схемы. Программа, которая решает рассматриваемую краевую задачу разностным методом, приведена в листинге 12.6.
Листинг 12.6. Реализация явной разностной схемы

Дадим минимальные комментарии, надеясь, что заинтересовавшийся читатель с карандашом в руках разберется в порядке индексов и соответствии матричных элементов, а возможно, составит и более удачную программу.
В первой строке листинга определяются функции и константы, входящие вмодель, во второй задается число точек сетки N=5 и ее равномерный шаг.Следующие две строки определяют матричные коэффициенты, аппроксимирующие уравнения для Y I> а пятая и шестая - для у^. Седьмая и восьмаястроки листинга задают соответственно левое и правое граничное условие, астроки с девятой по одиннадцатую - правые части системы (3). В следую щей строке завершается построение матрицы л вырезанием из нее левого нулевого столбца. В предпоследней строке листинга применена встроенная функция isoive для решения системы , а в последней выведены рассчитанные ею неизвестные граничные значения. Графики решения приведенына рис. 12.8, причем первые N элементов итогового вектора есть вычисленное излучение вперед, а последние N элементов - излучение назад.

Рис. 12.9. Неверное решение жесткой краевой задачипо неустойчивой явной разностной схеме
Выходом из положения будет использование неявных разностных схем.Применительно к нашей задаче достаточно заменить правые части уравнений (1) значениями не на левой, а на правой границе каждого шага:
Граничные условия, конечно, можно оставить в том же виде (2). Посколькумы имеем дело с линейными дифференциальными уравнениями, то и схему(4) легко будет записать в виде матричного равенства (3), перегруппировывая соответствующим образом выражение (4) и приводя подобные слагаемые. Разумеется, полученная матрица А будет иной, нежели матрица А дляявной схемы (1). Поэтому и решение (реализация неявной схемы) можетотличаться от изображенного на рис. 12.9 результата расчетов по явной схеме. Программа, составленная для решения системы (4), приведена в листинге 12.7.
Листинг 12.7. Реализация неявной разностной схемыдля жесткой краевой задачи

Не будем специально останавливаться на обсуждении листинга 12.7, поскольку он почти в точности повторяет предыдущий листинг. Отличие заключается лишь в формировании матрицы А другим способом, согласнонеявной схеме. Решение, показанное на рис. 12.10, демонстрирует, что произошло "небольшое чудо": "разболтка" исчезла, а распределение интенсивностей стало физически предсказуемым. Обратите внимание, что (из-за взятого нами слишком большого коэффициента ослабления излучения) отраженный пучок света имеет очень маленькую интенсивность, и ее пришлосьпостроить на графике с увеличением в тысячу раз.

Рис. 12.10. Решение краевой задачи разностным методом(листинг 12.7)

Примечание
Все примеры, рассмотренные в этом разделе, связаны с краевыми задачамидля линейных ОДУ. Благодаря линейности исходных уравнений и система разностных уравнений получалась линейной. Если же дифференциальные урав нения нелинейные, то решение их разностным методом существенно усложняется. Разбор соответствующих программ MathCAD выходит далеко за пределыданной книги. Но читатель, заинтересовавшийся примером со световыми пучками, может найти решение нелинейной задачи, описывающей эффект разогрева светом среды, на сайте автора http://www.kirianov.orc.ru.

Рис. 12.11. График поверхности решения уравнения Пуассона(листинг 12.8)

Рис. 12.12. График линий уровня решения уравнения Пуассона(листинг 12.8)
Параметр численного алгоритма характеризует скорость сходимости итераций. Он должен быть числом от о до 1. В матрице граничных условий v необходимо задать только граничные элементы, исходя из значения краевыхусловий по периметру расчетной области. Прочие (внутренние) элементыэтой матрицы служат для задания начального приближения к решению.Суть алгоритма релаксации сводится к тому, что в ходе итераций происходит проверка уравнений и соответствующая коррекция значений искомойфункции в каждой точке. Если начальное приближение выбрано удачно, томожно надеяться, что алгоритм сойдется ("срелаксирует") к правильномурешению.
Все матрицы, задающие как коэффициенты разностной схемы а,ь, с, d, e, граничные условия v, так и само решение F, должны иметь одинаковый размер(м+1)х(м+1), соответствующий размеру расчетной области. При этом целоечисло м обязательно должно быть степенью двойки: м=2 п .
Решение уравнения Пуассона с тремя источниками разной интенсивностипри помощью функции relax приведено в листинге 12.9.
Листинг 12.9. Решение уравнения Пуассона с помощью функции relax

Первые три строки имеют тот же смысл, что и в предыдущем листинге.Только вместо одного источника тепла взято их другое распределение -один сильный источник, один более слабый и один сток тепла. В следующих шести строках задаются коэффициенты разностной схемы. Отложим ихобсуждение до последнего раздела этой главы, ограничившись утверждением, что для решения уравнения Пуассона коэффициенты должны быть взяты именно такими, как показано в листинге 12.9. В предпоследней строкезадана матрица нулевых граничных условий и нулевых начальных приближений, а в последней матрице с присваивается результат действия функцииrelax. График полученного решения в виде линий уровня показан напие 12.13.

Рис. 12.14. Шаблон аппроксимации уравнения теплопроводности
Реализация разностной схемы для модели без источников тепла 0(x,T,t)=o приведена в листинге 12.10. В его первых трех строках заданышаги (т, и Д) по временной и пространственной переменным и коэффициент диффузии о, равный единице. В следующих двух строках заданы начальные (нагретый центр области) и граничные (постоянная температура на краях) условия соответственно. Затем приводится возможное программное решениеразностной схемы, причем функция пользователя v(t) задает вектор распределения искомой температуры в каждый момент времени, задаваемый целым числом t.
Листинг 12.10. Решение линейного уравнения теплопроводности

Начальное распределение температуры вдоль расчетной области и решениедля двух моментов времени показано на рис. 12.15 сплошной, пунктирной иштриховой линиями соответственно. Физически такое поведение вполнеестественно - с течением времени тепло из более нагретой области перетекает в менее нагретую, а зона изначально высокой температуры остывает иразмывается.
Намного более интересные решения можно получить для нелинейногоуравнения теплопроводности, например, с нелинейным источником тепла(x,t)=io 3 -(т-т 3 ). Если задать его в таком виде в третьей строке листинга 12.10, то получится решение в форме тепловых фронтов, распространяющихся в обе стороны от зоны первичного нагрева (рис. 12.16). Еще болеенеожиданные решения возможны при нелинейности также и коэффициентадиффузии. Например, если взять о(х,т)=т 2 , a 0(x,t)=10 3 -T 3 - 5 , то вы сможетенаблюдать эффект горения среды, локализованный в области ее первичногонагрева. Читателю предлагается поэкспериментировать с этим и другими нелинейными вариантами уравнения теплопроводности. Существенно, чтотакие интересные результаты удается получить лишь численно, а в MathCAD только с применением элементов программирования.

Рис. 12.15. Решение линейного уравнения теплопроводности(листинг 12.10)

Рис. 12.17. Шаблон аппроксимации уравнения Пуассона "крест"
Таким образом, нетрудно сообразить, что с помощью встроенной функцииrelax можно решать и другие линейные дифференциальные уравнения вчастных производных, которые можно аппроксимировать схемой типа"крест" или схемой, являющейся ее составной частью. Например, возможнареализация явной схемы для однородного уравнения теплопроводности (см. разд. 12.4.2). Для этого требуется задать коэффициенты, показанные нашаблоне (см. рис. 12.14), в аргументах функции relax (листинг 12.11).
Листинг 12.11. Решение уравнения теплопроводности С помощью функции relax

В остальном, программа работает точно так же, как представленная на листинге 12.9. Результат ее действия показан на рис. 12.18 в виде трехмернойповерхности. Если сравнить рис. 12.18 с рис. 12.15, полученным при расчетах по запрограммированной разностной схеме, то в графиках рис. 12.15 нетрудно узнать сечения этой поверхности плоскостями t=const.

Рис. 12.18. Решение уравнения теплопроводности с помощью функции relax (листинг 12.11)
В заключение разговора об уравнениях в частных производных, нельзя несказать несколько слов об их визуализации. Результат решения динамических уравнений (зависящих от времени t) выглядит намного эффектнее,если будет представлен в виде анимации. Для создания анимационных роликов расчетное время следует выразить через константу FRAME и затем применить команду View / Animate (Вид / Анимация) (как об этом рассказано вразд. "Создание анимации"гл. 15).

Численные методы решения краевых задач

Постановка задачи и основные положения

Рассмотрим двухточечные краевые задачи, часто встречающиеся в приложениях, например, при решении задач вариационного исчисления, оптимального управления, механики жидкости и газа и др. Пусть дано обыкновенное дифференциальное уравнение

и краевые условия

где [math]F \bigl(x,y,y',\ldots,y^<(n)>\bigr);

j=\overline[/math] — функции указанных аргументов, заданные в некоторой области их изменения; [math]L[/math] и [math](n-L)[/math] — число условий на левом и правом концах отрезка [math][a,b][/math] соответственно. Общее количество условий равно порядку дифференциального уравнения. Требуется найти функцию [math]y=y(x)[/math] , которая на отрезке [math][a,b][/math] удовлетворяет уравнению (7.1), а на концах отрезка — краевым условиям (7.2).

Если уравнения (7.1),(7.2) линейны относительно искомой функции и ее производных, то краевая задача называется линейной.

Для простоты ограничимся частным случаем линейной краевой задачи для дифференциального уравнения второго порядка [math](n=2)[/math] , которая наиболее часто ставится в вычислительной практике и записывается в виде

(\Omega \equiv [a,b]),[/math]

где [math]p(x),\, q(x),\, f(x)\in C_2[a,b][/math] — заданные функции, а [math]\alpha_0,\,\alpha_1,\, \beta_0,\, \beta_1,\,A,\,B[/math] — заданные числа, 0,

j=0;1[/math] . Требуется найти функцию [math]y(x)[/math] , удовлетворяющую уравнению (7.3) и краевым условиям (7.4). Краевые условия при [math]\alpha_\ne0,

j=0;1[/math] , задают линейную связь между значениями искомого решения и его производной на концах отрезка [math][a,b][/math] .

В простейшем случае, когда [math]\beta_0=0,

\beta_1=0[/math] , краевые условия задают на концах отрезка [math][a,b][/math] только значения функции [math]y(a),\,y(b)[/math] . Такие функциональные условия называют краевыми условиями первого рода. В этом случае краевая задача называется первой краевой задачей.

В случае, когда [math]\alpha_0=0,

\alpha_1=0[/math] , т.е. на концах отрезка заданы только значения производных, краевые условия являются дифференциальными. Такие краевые условия называют условиями второго рода или "мягкими". Последнее название обусловлено тем, что они определяют на концах отрезка [math][a,b][/math] всего лишь наклоны интегральных кривых, а не значения функции [math]y(x)[/math] . В этом случае задача (7.3),(7.4) называется второй краевой задачей.

В общем случае, когда [math]\alpha_0[/math] и (или) [math]\alpha_1;

\beta_0[/math] и (или) [math]\beta_1[/math] не равны нулю, краевые условия носят функционально-дифференциальный характер и называются условиями третьего рода. Тогда задача (7.3),(7.4) называется третьей краевой задачей.

Например, условия [math]y(a)=A,

y(b)=B[/math] являются условиями первого рода. Геометрически это означает, что при решении первой краевой задачи требуется найти интегральную кривую уравнения (7.3), проходящую через данные точки [math](a,A),\, (b,B)[/math] (рис. 7.1,а). Условия [math]y'(a)=A,\, y'(b)=B[/math] являются условиями второго рода. Геометрически вторая краевая задача сводится к отысканию интегральной кривой уравнения, пересекающей прямые [math]x=a,

x=b[/math] под заданными углами [math]\alpha,\,\beta[/math] , где [math]\operatorname\alpha=A,

\operatorname\beta=B[/math] (рис. 7.1,6). Условия [math]y'(a)=A,

y(b)=B[/math] являются частным случаем краевых условий третьего рода, так как [math]\alpha_0=0,

\beta_1=0[/math] . Геометрически данная краевая задача сводится к отысканию интегральной кривой уравнения, проходящей через точку [math](b,B)[/math] и пересекающей прямую [math]x=a[/math] под данным углом [math]\alpha[/math] , где [math]\operatorname\alpha= A[/math] (рис. 7.1,в).

В общем случае краевая задача может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь несколько или бесконечно много решений.

Утверждение 7.1 (о существовании и единственности решения краевой задачи (7.3),(7.4)). Для того чтобы существовало единственное решение краевой задачи (7.3),(7.4), необходимо и достаточно, чтобы однородная краевая задача

имела только тривиальное решение [math]y(x)\equiv0[/math] .

Пример 7.1. Найти аналитическое решение следующих краевых задач:

0 \leqslant x \leqslant \frac<\pi><2>,

y\! \left(\frac<\pi><2>\right)-y'\! \left(\frac<\pi><2>\right)=2[/math] (третья краевая задача);

0 \leqslant x \leqslant 1,

y(1)=0[/math] (первая краевая задача).

Воспользуемся известной методикой отыскания общих решений дифференциальных уравнений. Подставив в них заданные краевые условия, получим аналитические решения данных краевых задач.

1. Найдем общее решение однородного уравнения [math]y''+y=0[/math] , одинакового для обеих рассматриваемых задач. Так как характеристическое уравнение [math]\lambda^2+1=0[/math] имеет комплексные сопряженные корни [math]\lambda_<1,2>=\pm i= \alpha\pm \beta i[/math] [math](\alpha=0,

\beta=1)[/math] , то общее решение будет

2. Частные решения неоднородных уравнений находятся методом подбора. Подставляя [math]y_<\text>(x)=C[/math] в уравнение [math]y''+y=1[/math] , а [math]y_<\text>(x)=Dx[/math] в уравнение [math]y''+y=-x[/math] , получаем [math]C=1,

D=-1[/math] . Поэтому [math]y_<\text>(x)=1[/math] в случае "а", [math]y_<\text>(x)=-x[/math] в случае "б".

3. Найдем общее решение неоднородного уравнения как сумму общего решения однородного уравнения и частного решения неоднородного уравнения:

а) [math]y(x)=C_1\cos x+C_2\sin x+1[/math] ; б) [math]y(x)=C_1\cos x+C_2\sin x-x[/math] .

4. Определим значения произвольных постоянных из краевых условий третьего рода (случай "а") и первого рода (случай "б"):

а) найдем [math]y'(x)=-C_1\sin x+C_2\cos x[/math] . Тогда

Отсюда [math]C_1=1[/math] и [math]y(x)=1+\cos x[/math] — решение краевой задачи "а";

б) общее решение [math]y(x)=C_1\cos x+C_2\sin x-x[/math] и, следовательно, [math]y(0)=C_1=0,

y(1)=C_1\cos1+ C_2\sin1-1=0[/math] , отсюда [math]C_2= \frac<1><\sin1>[/math] и [math]y(x)=\frac<\sin x><\sin1>-x[/math] — решение краевой задачи "б". Таким образом, решение краевой задачи представляет собой такое частное решение, которое удовлетворяет краевым условиям.

Рассмотренный метод нахождения аналитического решения краевых задач применим для ограниченного класса задач. Поэтому в вычислительной практике используются численные и приближенно-аналитические методы, позволяющие найти приближенное решение краевых задач, точные аналитические решения которых не могут быть найдены.

Метод сеток

Рассмотрим линейную краевую задачу с краевыми условиями первого рода (первую краевую задачу):

где [math]p(x),q(x),f(x)\in C_2[a,b][/math] — заданные функции; [math]A,\,B[/math] — заданные числа.

Очевидно, любой отрезок [math][a,b][/math] , на котором ищется решение краевой задачи, можно привести к отрезку [math][0;1][/math] с помощью линейного преобразования [math]\widetilde= \frac[/math] . Действительно, тогда новая переменная [math]\widetilde\in [0;1][/math] . В результате без ограничения общности краевая задача (7.5) может быть решена сначала на отрезке [math][0;1][/math] , а затем это решение с помощью преобразования [math]x=a+(b-a)\cdot \widetilde[/math] может быть записано на отрезке [math][a,b][/math] . То же относится и к исследованию свойств полученного решения.

Утверждение 7.2 (о единственности решения краевой задачи (7.5)). Если функции [math]p(x),q(x),f(x)[/math] принадлежат классу [math]C_2[a,b],

q(x) \geqslant 0[/math] на [math][0;1][/math] , то краевая задача (7.5) имеет единственное решение [math]y(x)\in C_4[0;1][/math] .

Для решения задачи (7.5) применим метод сеток, получаемый путем аппроксимации первой и второй производных. Введем равномерную сетку (где [math]n[/math] — число отрезков разбиения)

Функции [math]p(x),q(x),f(x)[/math] заменяются их проекциями на сетку [math]\Omega_n[/math] , то есть [math]p(x)\to p(x_)=p_i,[/math] [math]q(x)\to q(x_)=q_i,[/math] [math]f(x)\to f(x_)= f_i,[/math] . Вместо точного решения [math]y(x)[/math] отыскивается некоторое приближение [math]\widehat_= \widehat(x_)\approx y(x_),

i=\overline<0,n>[/math] . Первая и вторая производные аппроксимируются на трехточечном шаблоне [math](x_,x_,x_)[/math] по формулам второго порядка (5.10),(5.14):

Краевые условия для этой задачи аппроксимируются точно, т.е. [math]y(a)[/math] и [math]y(b)[/math] заменяются на [math]\widehat_<0>[/math] и [math]\widehat_[/math] . После замены от дифференциальной задачи (7.5) переходим к разностной схеме:

представляющей собой систему алгебраических уравнений трехдиагонального вида:

\delta_=f_[/math] . Здесь система (7.6) записана для внутренних узлов сетки [math]\Omega_n[/math] . Она является трехдиагональной системой линейных алгебраических уравнений и решается методом прогонки.

1. Изложенный метод сеток допускает обобщение. Например, его можно применять для решения нелинейной краевой задачи:

где [math]F(x,y)[/math] — нелинейная по [math]y[/math] функция (в общем случае, который здесь не рассматривается, функция [math]F[/math] зависит также и от [math]y'[/math] ).

Рассуждая аналогично рассмотренному выше способу, перейдем к разностной задаче:

В силу нелинейности правой части полученная алгебраическая система является нелинейной и для ее решения нельзя использовать метод прогонки в том виде, в каком он изложен для линейной задачи. Поэтому для ее решения используем метод простых итераций, с помощью которого при фиксированном [math]k[/math] (номер итерации) система алгебраических уравнений (7.8) превращается в линейную, так как величины, входящие в правую часть системы, известны из предыдущей итерации. Действительно, для k-й итерации получается система (которая решается на каждой итерации методом прогонки)

Можно показать, что итерации сходятся при выполнении условия [math]q=\frac<1><8>(x_n-x_0)^2M_1 [math]M_1=\max_<[a,b]>\left|\frac<\partial F><\partial y>\right|[/math] с линейной скоростью.

2. Краевые условия второго и третьего рода в задаче, аналогичной (7.5), могут быть аппроксимированы несколькими способами.

Первый способ. Использование аппроксимационных формул (5.4) первого порядка

В силу первого порядка этих аппроксимаций метод сеток в этом случае также будет иметь первый порядок аппроксимации.

Второй способ. Применение формулы Тейлора и ее преобразование с использованием дифференциального уравнения. Таким способом может быть достигнут второй порядок аппроксимации.

Третий способ. Применение левосторонней (5.8) и правосторонней (5.9) формул, аппроксимирующих производные со вторым порядком:

3. Порядок аппроксимации схемы определяется минимальным порядком аппроксимации дифференциального уравнения и краевых условий.

Алгоритм применения метода сеток

1. Задать сетку [math]\Omega_n[/math] на отрезке [math][a,b][/math] или сформировать ее из условий достижения требуемой точности.

2. Используя аппроксимационные формулы (5.10),(5.14) и один из трех способов аппроксимации краевых условий (в случае, если они второго или третьего рода), перейти от исходной дифференциальной задачи к системе алгебраических уравнений (разностной схеме), неизвестными в которой являются величины, "близкие" к решению краевой задачи в узлах сетки.

3. Найти решение разностной задачи путем решения трехдиагональной системы уравнений и таким образом определить приближенное решение краевой задачи.

Пример 7.2. Найти приближенное решение краевой задачи [math]y''+y=1,

0 \leqslant x \leqslant \frac<\pi><2>,[/math] [math]y'(0)=0,[/math] [math]y\! \left(\frac<\pi><2>\right)-y'\! \left(\frac<\pi><2>\right)=2[/math] при [math]n=3[/math] , используя первый способ аппроксимации краевых условий. Записать разностные схемы для второго и третьего способов при произвольном [math]n[/math] .

В поставленной задаче

Для решения задачи воспользуемся методикой.

1. Так как [math]n=3[/math] , то сетка имеет вид [math]\Omega_3=\[/math] , где [math]x_=ih,

y\! \left(\frac<\pi><6>\right)=y_1,[/math] [math]y\! \left(\frac<\pi><3>\right)=y_2,[/math] [math]y\! \left(\frac<\pi><2>\right)=y_3[/math] . Будем искать приближенные значения [math]\widehat_0,\widehat_1, \widehat_2, \widehat_3[/math] . Проекции функций [math]p(x), q(x), f(x)[/math] на сетку имеют вид [math]p_=0,

2. Составим разностную схему. Согласно (7.6), для внутренних узлов сетки получаем

i=1;2[/math] или [math]\widehat_-(2-h^2)\widehat_+ \widehat_=h^2,

Применим первый способ аппроксимации краевых условий. По формуле (5.4) с учетом условия [math]y'(0)=0[/math] на левом конце имеем

На правом конце [math]y\! \left(\frac<\pi><2>\right)=y_3,

y'\! \left(\frac<\pi><2>\right)=y'_3[/math] , и по второй из формул (7.9) [math]\widehat\,'_<3>= \frac<\widehat_<3>-\widehat_<2>>[/math] . Тогда краевое условие [math]y\! \left(\frac<\pi><2>\right)-y'\! \left(\frac<\pi><2>\right)=2[/math] аппроксимируется выражением

В результате получаем разностную схему первого порядка аппроксимации (трехдиагональную систему линейных алгебраических уравнений)

Сравнивая первое уравнение этой системы с рекуррентным соотношением [math]\widehat_= P_\cdot \widehat_+ Q_[/math] метода прогонки, характеризующим обратный ход, получаем [math]P_0=1,

После этого вычисляются все последующие прогоночные коэффициенты по формулам:

Здесь [math]\alpha_,\beta_,\gamma_[/math] соответствуют коэффициентам левой части полученной алгебраической системы, а [math]\delta_[/math] — правой части.

Далее выполняется обратный ход: [math]\widehat_<3>=Q_3,

\widehat_<2>= P_2\widehat_<3>+ Q_2,

\widehat_<1>= P_1\widehat_<2>+ Q_1[/math] .

Результаты решения краевой задачи приведены в табл. 7.1, в которой последний столбец соответствует точному решению [math]y(x)=1+\cos x[/math] , найденному в примере 7.1.

7.1>>\\\hline i& \alpha_& \beta_& \gamma_& \delta_& P_& Q_& \widehat_& y(x) \\\hline 0& 0&-1,\!0000&-1& 0,\!00000& 1,\!00000& 0& 1,\!8648& 2,\!0000\\\hline 1& 1& 1,\!72584& 1& 0,\!27415& 1,\!37771&-0,\!37770& 1,\!8648& 1,\!8666\\\hline 2& 1& 1,\!72584& 1& 0,\!27415& 2,\!87240&-1,\!87242& 1,\!6277& 1,\!5000\\\hline 3& 1& 0,\!47640&-& 1,\!04200&-& 1,\!21853& 1,\!21853& 1,\!0000\\\hline \end[/math]

В силу того, что краевые условия аппроксимированы с первым порядком относительно [math]h[/math] , в данном случае получена разностная схема первого порядка, так как порядок аппроксимации схемы определяется минимальным порядком аппроксимации дифференциального уравнения и краевых условий.

Воспользуемся вторым способом аппроксимации краевых условий для построения разностной схемы второго порядка аппроксимации. Разложим [math]y(x)[/math] в точке [math]x=x_1[/math] относительно точки [math]x_0[/math] по формуле Тейлора:

Выразим из этого соотношения [math]y'(x_0)[/math] и подставим в него вместо [math]y''(x_0)[/math] выражение [math]y''(x_0)=1-y(x_0)=1-y_0[/math] , определяемое исходным дифференциальным уравнением:

Как показывает это соотношение, дифференциальное условие на левой границе аппроксимируется на двухточечном шаблоне [math](x_0,x_1)[/math] со вторым порядком аппроксимации двухточечным алгебраическим уравнением:

Аналогично получается двухточечное алгебраическое уравнение при / [math]i=n-1[/math] и [math]i=n[/math] . Разложение [math]y(x)[/math] в точке [math]x=x_[/math] относительно точки [math]x_n[/math] по формуле Тейлора имеет вид

Выражая отсюда [math]y'(x_n)[/math] с учетом связи [math]y''(x_n)=1-y(x_n)=1-y_n[/math] , следующей из исходного дифференциального уравнения, получаем

Подставим это выражение в граничное условие:

Таким образом, система линейных алгебраических уравнений в окончательном виде записывается следующим образом:

Эта трехдиагональная система, отличающаяся от полученной первым способом только первым и последним уравнениями, решается численно методом прогонки.

Применим третий способ аппроксимации краевых условий для построения разностной схемы второго порядка. Так, для крайней левой точки используется левосторонняя формула (5.8):

Тогда получается трехточечное алгебраическое уравнение:

Аппроксимация производной [math]y'\! \left(\frac<\pi><2>\right)[/math] в крайней правой точке по правосторонней формуле [math]\widehat\,'_= \frac<1> <2h>\bigl(\widehat_-4\widehat_+ 3\widehat_\bigr)[/math] приводит к трехточечному алгебраическому уравнению:

Тогда в этом случае получается следующая система линейных алгебраических уравнений:

Здесь [math]\widehat_<2>[/math] в первом уравнении и [math]\widehat_[/math] в последнем нарушают ее трехдиагональный характер. В этом случае система приводится к трехдиагональному виду путем исключения [math]\widehat_<2>[/math] и [math]\widehat_[/math] из первых двух и последних двух уравнений системы и после этого решается методом прогонки.

Методы минимизации невязки

Описываемые здесь методы относятся к приближенно-аналитическим и могут применяться при решении достаточно широкого класса задач. На основе одного из приближенно-аналитических методов (метода Галеркина) строится метод конечных элементов, излагаемый в разд. 7.5.

Рассмотрим линейную краевую задачу (7.3),(7.4). Ее решение будем искать в виде

где [math]\varphi_0(x), \varphi_1(x), \ldots, \varphi_m(x)[/math] — элементы заданной системы функций; [math]a_1,\ldots,a_m[/math] — неопределенные коэффициенты. Заданная система функций называется базисной, и ее элементы должны удовлетворять условиям:

а) [math]\varphi_(x)\in C_2[a,b],

б) при любом конечном [math]m[/math] функции [math]\varphi_1(x), \ldots, \varphi_m(x)[/math] линейно независимы на отрезке [math][a,b][/math] ;

в) [math]\varphi_0(x)[/math] удовлетворяет краевым условиям (7.4)

г) [math]\varphi_1(x), \ldots, \varphi_m(x)[/math] удовлетворяют условиям

называется невязкой . Она равна разности левой и правой частей уравнения (7.3), образующейся при подстановке [math]\widehat_(x)[/math] вместо [math]y(x)[/math] в дифференциальное уравнение, и характеризует степень отклонения функции [math]\widehat_(x)[/math] от точного решения краевой задачи. Если при некоторых значениях коэффициентов [math]a_1,\ldots,a_m[/math] невязка тождественно равна нулю на отрезке [math][a,b][/math] , а именно

то функция [math]\widehat_(x)[/math] совпадает с точным решением краевой задачи (7.3),(7.4), так как удовлетворяются и уравнение, и краевые условия.

Однако при решении краевых задач, как правило, не удается получить невязку тождественно равной нулю. Поэтому ставится задача: вычислить коэффициенты [math]a_1,\ldots,a_m[/math] таким образом, чтобы невязка в каком-либо смысле стала меньшей. Полученные в результате коэффициенты определяют приближенное решение (7.11).

Выражение для невязки [math]\varepsilon(x; a_1,\ldots, a_m)[/math] с учетом (7.11) удобно записывать в следующей эквивалентной форме:

где [math]L\widehat_\equiv \widehat\,''_(x)+ p(x)\widehat\,'_(x)-q(x) \widehat_(x),

L[/math] — линейный оператор задачи (7.3),(7.4) (выполняются равенства [math]L(y+z)= Ly+Lz,[/math] [math]L(Cy)=C\cdot Ly[/math] для любых [math]y,\,z[/math] и постоянной [math]C[/math] ).

Рассмотрим различные методы, минимизирующие невязку .

А. Метод коллокации. На интервале [math](a,b)[/math] задаются т точек [math]x_1,\ldots, x_n[/math] (точек коллокации) и требуется, чтобы в каждой из них невязка (7.14) обращалась в нуль:

С учетом (7.16) эта система принимает вид

Если полученная система [math]m[/math] линейных уравнений совместна, то из нее определяются коэффициенты [math]a_1,\ldots, a_m[/math] , которые затем подставляются в (7.11).

Б. Метод наименьших квадратов (непрерывный вариант). Неизвестные коэффициенты [math]a_1,\ldots, a_m[/math] должны обеспечивать минимум интеграла от квадрата невязки:

Для решения задачи применяются необходимые условия безусловного экстремум:

Подставляя (7.16) в (7.19), получаем систему [math]m[/math] линейных алгебраических уравнений для нахождения коэффициентов [math]a_1,\ldots, a_m\colon[/math]

В. Метод наименьших квадратов (дискретный вариант). Неизвестные коэффициенты [math]a_1,\ldots,a_m[/math] должны обеспечивать минимум суммы квадратов значений невязки в заданном наборе точек [math]x_1,\ldots,x_n;

n \geqslant m[/math] , то есть [math]x_\in (a,b),

Для решения задачи применяются необходимые условия безусловного экстремума

Отсюда следует система [math]m[/math] линейных уравнений для нахождения коэффициентов [math]a_1,\ldots,a_m[/math] , которая по форме записи совпадает с (7.20), но скалярное произведение определяется по формуле [math]\textstyle<(f,g)= \sum\limits_^ f(x_)g(x_)>[/math] .

Замечание. При [math]n=m[/math] результаты, полученные точечным методом наименьших квадратов и методом коллокации, совпадают. В этом случае точки [math]x_1,\ldots, x_n[/math] являются точками коллокации.

Г. Метод моментов (взвешенных невязок). Неизвестные коэффициенты ах. ат находятся из условия равенства нулю /и моментов невязки:

j=\overline<1,m>[/math] — функции, удовлетворяющие условиям:

б) функции [math]\psi_(x)[/math] являются элементами системы степеней [math]x[/math] или системы тригонометрических функций.

j=\overline<1,m>[/math] называются весовыми, а условие (7.22) является условием ортогональности невязки к весовым функциям.

Д. Метод Галсркина. Он является частным случаем метода моментов, когда в качестве весовых функций используются базисные. Коэффициенты [math]a_1,\ldots,a_m[/math] находятся из условия ортогональности функций базисной системы [math]\varphi_1(x),\ldots, \varphi_(x)[/math] к невязке:

Отсюда следует система [math]m[/math] линейных уравнений для нахождения коэффициентов:

Известно, что при достаточно большом [math]m[/math] условие (7.23) обеспечивает малость невязки в среднем.

Алгоритм применения методов минимизации невязки

1. В выражении (7.11) выбрать систему базисных функций, задать число [math]m[/math] в зависимости от требуемой точности.

2. Найти коэффициенты [math]a_1,\ldots,a_m[/math] путем решения одной из систем алгебраических уравнений (7.18),(7.20),(7.24) в зависимости от выбранного метода.

3. Выписать приближенное решение краевой задачи по формуле (7.11).

Пример 7.3. Найти приближенное решение краевой задачи [math]y''+y=-x,

0 \leqslant x \leqslant 1,[/math] [math]y(0)=0,

y(1)=0[/math] методом коллокации, интегральным методом наименьших квадратов, методом Галеркина

В поставленной задаче

Точное решение найдено в примере 7.1.

Воспользуемся сначала методом коллокации.

1. Зададим [math]m=2[/math] и будем искать решение в виде

где [math]\varphi_0(x)\equiv0[/math] (эта функция удовлетворяет каждому из краевых условий, т.е. [math]\varphi_0(0)=0,

\varphi_0(1)=0[/math] ), функции [math]\varphi_1(x)= x(1-x),

\varphi_2(x)= x^2(1-x)[/math] . Функции [math]\varphi_1(x),\, \varphi_2(x)[/math] линейно независимые, дважды непрерывно дифференцируемые и удовлетворяют условию (7.13). Действительно,

Таким образом, решение краевой задачи ищется в форме

2. Так как [math]m=2[/math] и [math]\varphi_0(x)\equiv 0[/math] , то система (7.18) имеет вид

Выберем узлы коллокации: [math]x_1=1\!\!\not<\phantom<|>>\,4,

Таким образом, имеем линейную систему относительно [math]a_1[/math] и [math]a_2\colon[/math]

3. Приближенное решение задачи: [math]\widehat_2(x)= \frac<217>(42+40x)[/math] .

Решим теперь задачу методом наименьших квадратов (см. непрерывный вариант).

1. Решение краевой задачи ищется в форме [math]\widehat_2(x)= a_1\cdot x(1-x)+ a_2\cdot x^2(1-x)[/math] .

2. Так как [math]f(x)=-x,

\varphi_0(x)\equiv 0[/math] , то система (7.20) имеет вид

Итак, имеем линейную систему относительно [math]a_1[/math] и [math]a_2\colon[/math]

Приближенное решение задачи: [math]\widehat_2(x)=0,\!1875419x(1-x)+ 0,\!1694707x^2(1-x).[/math] .

Решим задачу методом Галеркина.

1. Пусть сначала [math]m=1[/math] . Решение ищется в форме [math]\widehat_1(x)= a_1\cdot x(1-x)[/math] .

2. Тогда система (7.24) преобразуется к виду

Так как [math]\varphi_1(x)= x(1-x),

L\varphi_1(x)= \varphi''_1(x)+ \varphi_1(x)=-2+x(1-x)[/math] , получаем

После вычисления интегралов имеем уравнение [math]-\frac<3><10>\,a_1=-\frac<1><12>[/math] , откуда [math]a_1=\frac<5><18>[/math] .

3. Приближенное решение краевой задачи: [math]\widehat_1(x)=\frac<5><18>\,x(1-x)[/math] . Пусть теперь [math]m=2[/math] .

1. Решение краевой задачи ищется в форме [math]\widehat_2(x)=a_1\cdot x(1-x)+ a_2\cdot x^2(1-x)[/math] .

2. Тогда система (7.24) имеет вид

Вычисляя интегралы, находим

3. Приближенное решение краевой задачи: [math]\widehat_2(x)= x(1-x)\! \left(\frac<71><369>+ \frac<7><41>\,x\right)[/math] .

Сопоставим полученные решения с точным (табл. 7.2).

7.2>>\\\hline x& y_<\text>& y_<\text>& y_<\text>& \text \\\hline 0,\!25& 0,\!045& 0,\!04311& 0,\!0440& 0,\!044014 \\\hline 0,\!50& 0,\!071& 0,\!06807& 0,\!0698& 0,\!069747 \\\hline 0,\!75& 0,\!062& 0,\!05899& 0,\!0600& 0,\!060050 \\\hline \end[/math]

Очевидно, метод Галеркина дал более точный результат.

Пример 7.4. Найти приближенное решение краевой задачи [math]y''+2xy'-2y=2x^2,

0 \leqslant x \leqslant 1,[/math] [math]y'(0)=-2,

y(1)+y'(1)=0[/math] методом Галеркина.

В поставленной задаче

1. Зададим [math]m=2[/math] и подберем функции [math]\varphi_0(x),\, \varphi_1(x),\, \varphi_2(x)[/math] , используя систему [math]1,x,x^2,\ldots[/math] . Функция [math]\varphi_0(x)[/math] должна удовлетворять условиям (7.12):

Пусть [math]\varphi_0(x)=b+cx[/math] , где [math]b,\,c[/math] — неопределенные коэффициенты. Тогда

Отсюда [math]b=4[/math] и [math]\varphi_0(x)=4-2x[/math] .

Функции [math]\varphi_1(x),\, \varphi_2(x)[/math] должны удовлетворять условиям (7.13):

Первое условие выполняется для функций вида [math]\varphi_= x^+b_[/math] . Значения [math]b_[/math] находятся из второго условия [math]1+b_+j+1=0[/math] , откуда [math]b_=-j-2[/math] . Тогда получаем [math]\varphi_1(x)=x^2-3,

Таким образом, решение краевой задачи ищется в форме

2. Тогда система (7.24) имеет вид

3. Приближенное решение краевой задачи [math]\widehat_2(x)= x^2-2x+1[/math] .

Методы сведения краевой задачи к задаче Коши

Метод стрельбы. Суть этого метода заключается в сведении решения краевой задачи к многократному решению задачи Коши. Принцип построения метода стрельбы рассмотрим на примере нелинейной краевой задачи:

где [math]f(x,y,y')[/math] — нелинейная функция, обусловливающая нелинейность дифференциального уравнения (7.25).

При введении новой переменой [math]z=y'[/math] уравнение (7.25) записывается в нормальной форме Коши, а краевые условия видоизменяются:

где [math]\eta=y'(a)=\operatorname\alpha[/math] — параметр, равный тангенсу угла наклона интегральной кривой в точке [math]x=a[/math] . Угол [math]\alpha[/math] (параметр [math]\eta[/math] ) в процессе многократного решения краевой задачи должен принять такое значение, чтобы интегральная кривая "попала в цель", т.е. в точку [math](b,B)[/math] (рис.7.2 ,а). В общем случае полученное при некотором значении [math]\eta[/math] решение [math]y(x,\eta)[/math] не будет удовлетворять условию [math]y(b,\eta)=B[/math] на правом конце отрезка.

Следовательно, требуется найти такое значение параметра [math]\eta[/math] , чтобы оно было корнем нелинейного уравнения [math]\Phi(\eta)= y(b,n)-B=0[/math] . Для решения этого уравнения, как правило, используются методы половинного деления или секущих. В случае использования метода половинного деления сначала делают "пробные" выстрелы при выбранных наугад или в соответствии с некоторым алгоритмом значениях [math]\eta[/math] до тех пор, пока среди значений [math]\Phi(\eta)[/math] не окажется двух противоположных по знаку. Им соответствует начальный интервал неопределенности, который далее последовательно сокращается путем деления пополам. При применении метода секущих используется формула

где [math]\eta^<(0)>,\,\eta^<(1)>[/math] — начальные значения параметра, [math]k[/math] — номер итерации. Итерации прекращаются при выполнении условия окончания [math]\bigl|\Phi(\eta^<(k)>)\bigr| \leqslant \varepsilon[/math] или [math]\bigl|\eta^<(k+1)>-\eta^<(k)>\bigr| \leqslant \varepsilon[/math] с некоторым положительным [math]\varepsilon[/math] , характеризующим точность решения задачи.

Замечание. Точность решения краевой задачи зависит не только от точности определения параметра [math]\eta[/math] , но также и от точности решения соответствующей задачи Коши. Поэтому одновременно с уточнением параметра [math]\eta[/math] рекомендуется уменьшать шаг при решении задачи Коши, либо выбирать более точный метод.

Рассмотрим применение метода стрельбы для решения линейной краевой задачи (7.3),(7.4):


источники:

http://phys.bspu.by/static/lib/inf/cmat/mcad2001/gl12/index.htm

http://mathhelpplanet.com/static.php?p=chislennyye-metody-resheniya-krayevykh-zadach