Крекинг пентана уравнение реакции при температуре

Пентан: способы получения и химические свойства

Пентан C5H12 – это предельный углеводород, содержащий пять атомов углерода в углеродной цепи. Бесцветная жидкость с характерным запахом, нерастворим в воде и не смешивается с ней.

Гомологический ряд пентана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Строение пентана

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :

При образовании связи С–С происходит перекрывание sp 3 -гибридных орбиталей атомов углерода:

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Это соответствует тетраэдрическому строению.

Например, в молекуле пентана C5H12 атомы водорода располагаются в пространстве в вершинах тетраэдров, центрами которых являются атомы углерода. При этом углеродный скелет имеет зигзагообразное строение.

Изомерия пентана

Структурная изомерия

Для пентана характерна структурная изомерия – изомерия углеродного скелета.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета отличаются строением углеродного скелета.

Например.

Для углеводородов состава С5Н12 существуют три изомера углеродного скелета: н-пентан, метилбутан (изопентан), диметилпропан (неопентан)

ПентанИзопентан
CH3-CH2-CH2-CH2-CH3 CH3-CH(CH3)-CH2-CH3

Для пентана не характерна пространственная изомерия.

Химические свойства пентана

Пентан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для пентана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для пентана характерны радикальные реакции.

Пентан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Пентан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании пентана образуется смесь хлорпроизводных.

Например, при хлорировании пентана образуются 1-хлорпентан, 2-хлорпентан и 3-хлорпентан:

Бромирование протекает более медленно и избирательно.

Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.

С третичный–Н > С вторичный–Н > С первичный–Н

Например, при бромировании пентана преимущественно образуются 3-бромпентан и 2-бромпентан:

1.2. Нитрование пентана

Пентан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в пентане замещается на нитрогруппу NO2.

Например. При нитровании пентана образуются преимущественно 2-нитропентан и 3-нитропентан:

2. Дегидрирование пентана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

Алканы с длинным углеродным скелетом, содержащие 5 и более атомов углерода в главной цепи, при дегидрировании образуют циклические соединения.

При этом протекает дегидроциклизация – процесс отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:

3. Окисление пентана

Пентан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Пентан горит с образованием углекислого газа и воды. Реакция горения пентана сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении пентана в недостатке кислорода может образоваться угарный газ СО или сажа С.

Получение пентана

1. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии гексаноата натрия с гидроксидом натрия при сплавлении образуются пентан и карбонат натрия:

CH3–CH2–CH2–CH2– CH2 –COONa + NaOH CH3–CH2–CH2 – CH2 – CH3 + Na2CO3

3. Гидрирование алкенов и алкинов

Пентан можно получить из пентена или пентина:

При гидрировании пентена-1 или пентена-2 образуется пентан:

При полном гидрировании пентина-1 или пентина-2 также образуется пентан:

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Из угарного газа и водорода можно получить пентан:

5. Получение пентана в промышленности

В промышленности пентан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H +Li +K +Na +NH4 +Ba 2+Ca 2+Mg 2+Sr 2+Al 3+Cr 3+Fe 2+Fe 3+Ni 2+Co 2+Mn 2+Zn 2+Ag +Hg 2+Pb 2+Sn 2+Cu 2+
OH —РРРРРМНМННННННННННН
F —РМРРРМННММНННРРРРРНРР
Cl —РРРРРРРРРРРРРРРРРНРМРР
Br —РРРРРРРРРРРРРРРРРНММРР
I —РРРРРРРРРР?Р?РРРРНННМ?
S 2-МРРРРННННННННННН
HS —РРРРРРРРР?????Н???????
SO3 2-РРРРРННМН?Н?НН?ММН??
HSO3Р?РРРРРРР?????????????
SO4 2-РРРРРНМРНРРРРРРРРМНРР
HSO4РРРРРРРР??????????Н??
NO3РРРРРРРРРРРРРРРРРРРРР
NO2РРРРРРРРР????РМ??М????
PO4 3-РНРРННННННННННННННННН
CO3 2-РРРРРНННН??Н?ННННН?Н?Н
CH3COO —РРРРРРРРРРРРРРРРРРР
SiO3 2-ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

Крекинг алканов

Вы будете перенаправлены на Автор24

Крекингом называется термическое превращение алканов при температурах 470-540 $<>^\circ$С.

При более высоких температурах (700-1000 $<>^\circ$ С) алканы подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции. При пиролизе происходит расщепление углерод-углеродных связей с образованием алкильных радикалов. Энергия углерод-углеродных связей в алканах близки по величине для первичных, вторичный, третичных и четвертичных атомов углерода (табл. 1) и в жестких условиях пиролиза расщепление любой связи $CH_2 — CH_2$ в нормальных алканах равновероятно.

Для разветвленных углеводородов преимущественно происходит разрыв связи у третичного или четвертичного атома углерода.

Виды и особенности крекинга

Различают термическое и каталитический крекинг. Главным объектом при крекинге является расщепление (деструкция) углеродной цепи по связям С-С с одновременным дегидрированием, изомеризацией и циклизацией. При этом образуются главным образом ненасыщенные углеводороды. Строение продуктов крекинга определяется:

  1. природой исходного алкана
  2. условиями проведения процесса (температурой, давлением, природой катализатора).

Начальная температура крекинга алканов зависит от их моле кулярный массы. Чем больше молекулярная масса, тем легче расщепляются алканы. В зависимости от длины углеродной цепи относительная скорость крекинга, например по отношению к пентана, равна:

  • Количество атомов углерода 5, 6, 7, 8, 10, 20
  • Относительная скорость крекинга 1, 4, 9, 10, 32, 120

Существуют такие тенденции разрыва связи С-С: с повышением температуры наблюдается смещение места разрыва к краю молекулы, с повышением давления углеродная цепь расщепляется ближе к середине. Так, из бутана при различных условиях могут образовываться следующие соединения:

Готовые работы на аналогичную тему

Рисунок 2. Виды и особенности крекинга. Автор24 — интернет-биржа студенческих работ

Термический крекинг

Термический крекинг — свободнорадикальное процесс, в результате которого образуются главным образом ненасыщенные углеводороды (мономеры). При температурах 450-550 $<>^\circ$С алканы расщепляются на свободные радикалы, способны дальше распадаться на более простые метильные и этильные радикалы, например:

Рисунок 3. Термический крекинг. Автор24 — интернет-биржа студенческих работ

Активные метильные радикалы отщепляют атомы водорода от молекул других алканов с образованием новых свободных радикалов:

Рисунок 4. Термический крекинг. Автор24 — интернет-биржа студенческих работ

Для таких свободных радикалов при крекинге наиболее характерные реакции, которые в целом формируют природу конечных продуктов, а именно:

Реакции $\beta $-распада:

Реакции обрыва (рекомбинации):

$\beta $-Распад и диспропорционирование свободных радикалов практически всегда проходят по $\beta $-связям относительно неспаренного электрона. Это происходит потому, что $\beta $-связь в известной степени разрыхлена вследствие уменьшения степени перекрывания соответствующих атомных орбиталей. Электронные облака таких $\sigma $-связей С-Н взаимодействуют с неспаренным электроном благодаря эффекту гиперконьюгации ($\sigma $-р-сопряжению).

В условиях пиролиза (высокие температуры) наблюдается глубокий распад алканов с образованием ацетиленовых углеводородов, сажи или кокса, водорода и др.

Каталитический крекинг

Каталитический крекинг применяют главным образом с целью получения разветвленных алканов (моторного топлива) и ненасыщенных углеводородов. В промышленных условиях процесс проходит в присутствии алюмосиликатных катализаторов или кислот Льюиса при 450-530 $<>^\circ$С и примерно атмосферном давлении. Реакция начинается с отщепления гидрид-иона от алкана с образованием карбокатионов, которые благодаря $\beta $-распаду притерпевают дальнейшие изменения:

Рисунок 8. Каталитический крекинг. Автор24 — интернет-биржа студенческих работ

Параллельно процессу образования олефинов происходит реакция изомеризации, которая чрезвычайно важна для получения разветвленных алканов, особенно изобутана и изопентана.

Изомеризация алканов в присутствии сильных кислот Льюиса или суперкислот проходит с образованием карбокатионов. Сильная кислота необходима потому, что алканы проявляют малое родство с протоном, поскольку не содержат $\pi $- или n-электронов.

Сначала образуется протонированный алкан с трицентровой двуэлектронной связью у атома углерода, по месту условного присоединения протона, поскольку конкретное место присоединения, как правило, неизвестно. Протонованый алкан быстро превращается в карбокатион, которые путем гидридного и метиланионного перемещений изомеризуются в третичные карбокатионы, то есть в разветвленные алканы:

Рисунок 9. Каталитический крекинг. Автор24 — интернет-биржа студенческих работ

Образованные с помощью каталитического крекинга разветвленные алканы — ценные высокооктановые бензины и сырье для получения каучуков.

Алканы в топливе

В двигателе внутреннего сгорания при сжатии бензиновой паров с воздухом алканы нормального строения образуют перекиси, которые вызывают преждевременное возгорание углеводородной смеси. Это явление называется детонацией и наносит вред двигателю.

Разветвленные алканы лишены этого недостатка. Ценные углеводороды с неоструктурой или структурой, подобной структуре изооктана (последнему условно присвоено октановое число 100, а для н-гептана октановое число составляет 0):

Рисунок 10. Алканы в топливе. Автор24 — интернет-биржа студенческих работ

Итак, если бензин имеет марку, например, 76, то это означает, что ему соответствует октановое число 76 и он проявляет такую же детонационную стойкость, как смесь 76\% изооктана и 24\% н-гептана. Выше октановое число (130> имеет 2,2,3-триметилбутан (триптан).

Топливо для дизельных двигателей характеризуется другим показателем — цетановым числом. Ценные топлива при этом, наоборот, состоят из алканов нормального, неразветвленного строения. Стандартом для дизельного топлива принят цетан $C_<16>H_<34>$ (цетановое число 100).


источники:

http://acetyl.ru/o/a5.php

http://spravochnick.ru/himiya/alkany_nomenklatura_alkanov/kreking_alkanov/