Критические значения параметра в уравнении

Критические значения параметра в уравнении

Глава 1. Основы химической термодинамики

1. Основные понятия термодинамики

Термодинамика — наука, изучающая взаимные переходы теплоты и работы в равновесных системах и при переходе к равновесию. Химическая термодинамика — раздел физической химии, в котором термодинамические методы применяются для анализа химических явлений: химических реакций, фазовых переходов и процессов в растворах.

Объект изучения термодинамики — термодинамические системы, т.е. макроскопические объекты, отделенные от окружающего пространства реальной или мысленной поверхностью. Системы бывают:

  • открытые, в которых существует обмен энергией и веществом с окружающей средой;
  • закрытые, в которых существует обмен энергией с окружением, но нет обмена веществом;
  • изолированные, в которых нет обмена с окружением ни энергией, ни веществом.

Состояние системы описывают с помощью макроскопических параметров. Параметры бывают:

  • внутренние, которые определяются только координатами тел системы, например: плотность или внутренняя энергия U;
  • внешние, которые определяются координатами тел в окружающей среде, например, объем V (при фиксированном положении стенок сосуда) или напряженность электрического поля E;
  • экстенсивные, которые прямо пропорциональны массе системы или числу частиц, например, объем V, энергия U, энтропия S, теплоемкость C;
  • интенсивные, которые не зависят от массы системы или числа частиц, например, температура T, плотность , давление p. Отношение любых двух экстенсивных параметров является интенсивным параметром, например парциальный мольный объем V или мольная доля x.

Среди термодинамических параметров выделяют обобщенные силы и обобщенные координаты. Обобщенные силы описывают состояние равновесия. К ним относят давление p, химический потенциал , электрический потенциал , поверхностное натяжение . Обобщенные силы — интенсивные параметры.

Обобщенные координаты — это величины, которые изменяются под действием соответствующих обобщенных сил. К ним относятся объем V, количество вещества n, заряд e, площадь W . Все обобщенные координаты — экстенсивные параметры.

Состояние системы описывается также с помощью термодинамических функций, которые зависят от параметров. Различают:

  • функции состояния, которые зависят только от состояния системы и не зависят от пути, по которому это состояние получено;
  • функции перехода, значение которых зависит от пути, по которому происходит изменение системы.

Примеры функций состояния: энергия U, энтальпия H, энергия Гельмгольца F, энергия Гиббса G, энтропия S. Термодинамические параметры объем V, давление p, температуру T также можно считать функциями состояния, т.к. они однозначно характеризуют состояние системы. Примеры функций перехода: теплота Q и работа A.

Функции состояния характеризуются следующими свойствами:

  1. бесконечно малое изменение функции f является полным дифференциалом (обозначается df);
  2. изменение функции при переходе из состояния 1 в состояние 2 определяется только этими состояниями: ;
  3. в результате любого циклического процесса функция состояния не изменяется:

Параметры системы могут зависеть или не зависеть от времени. В зависимости от этого различают следующие состояниятермодинамических систем:

  • стационарное, когда параметры системы не зависят от времени, но в системе есть потоки (например, массы или энергии);
  • равновесное, когда параметры системы не зависят от времени и нет потоков;
  • неравновесное, когда параметры системы зависят от времени.

Если хотя бы один из параметров системы меняется со временем, то говорят, что в системе происходит процесс. Процессы бывают:

  • обратимые, когда переход системы из одного состояния в другое и обратно может происходить по одному и тому же пути, и после возвращения в исходное состояние в окружающей среде не остается макроскопических изменений;
  • квазистатические, или равновесные, которые происходят под действием бесконечно малой разности обобщенных сил;
  • необратимые, или неравновесные, когда параметры меняются с конечной скоростью.

Все выводы и соотношения термодинамики основаны на двух постулатах (исходных положениях) и трех законах (началах).

Первое исходное положение, или основной постулат термодинамики:

Любая изолированная система с течением времени приходит в равновесное состояние и самопроизвольно не может из него выйти.

Это положение ограничивает размер систем, которые описывает термодинамика. Оно не выполняется для систем астрономического масштаба и микроскопических систем с малым числом частиц. Системы галактического размера самопроизвольно не приходят в состояние равновесия благодаря дальнодействующим гравитационным силам. Микроскопические системы могут самопроизвольно выходить из состояния равновесия; это явление называют флуктуациями. В статистической физике показано, что отклонение от положения равновесия имеет амплитуду порядка , где N — число частиц в системе. Таким образом, нижний предел для числа частиц в термодинамической системе — порядка 10 18 .

Переход системы в равновесное состояние называют релаксацией. Основной постулат термодинамики ничего не говорит о времени релаксации. В классической равновесной термодинамике вообще нет времени. Термодинамика позволяет установить только возможность протекания процессов, но не может определить скорость этих процессов.

Второе исходное положение, или нулевой закон термодинамики описывает свойства систем, находящихся в состоянии теплового равновесия:

Если система А находится в тепловом равновесии с системой В, а та, в свою очередь, находится в равновесии с системой С, то системы А и С также находятся в тепловом равновесии.

Это свойство говорит о существовании особого интенсивного параметра, характеризующего состояние теплового равновесия. Этот параметр называют температурой. Системы, находящиеся в тепловом равновесии, имеют одинаковую температуру. Таким образом, нулевой закон — это постулат о существовании температуры.

Из нулевого закона следует, что при равновесии внутренние параметры системы являются функциями внешних параметров и температуры. Уравнение, связывающее внутренние параметры с внешними параметрами и с температурой, называют уравнением состояния термодинамической системы. В общем случае уравнение состояния имеет вид:

или , где a — совокупность внутренних параметров, b — совокупность внешних параметров, T — температура. Если внутренним параметром является давление, а внешним — объем, то уравнение состояния

(1.1) называют термическим. Если внутренним параметром является энергия, а внешним — объем, то уравнение состояния

(1.2) называют калорическим.

Если известны термическое и калорическое уравнения состояния, то с помощью законов термодинамики можно определить все термодинамические свойства системы, т.е. получить ее полное термодинамическое описание. Сами уравнения состояния нельзя вывести методами классической термодинамики, но их можно определить экспериментально.

Простейшее уравнение состояния описывает систему невзаимодействующих частиц точечного размера — идеальный газ:

, (1.3) где n — количество вещества (в молях), R — универсальная газовая постоянная:

R = 8.314 Дж/(моль . К) = 1.987 кал/(моль . К) = 0.0821 л . атм/(моль . К).

Для описания реальных газов, в которых частицы имеют конечные размеры и взаимодействуют друг с другом, используют более сложные уравнения состояния:

(уравнение Ван-дер-Ваальса)

(уравнение Бертло)

(I уравнение Дитеричи)

(II уравнение Дитеричи)

Все эти уравнения записаны для одного моля газа; величины a и b — индивидуальные постоянные газов.

С высокой точностью поведение любого реального газа можно описать с помощью вириального разложения по степеням обратного объема:

(1.4) или давления , (1.5)

где Bi, Bi‘ — i-ые вириальные коэффициенты, которые зависят от температуры.

Уравнение состояния идеального газа и вириальное уравнение состояния реального газа можно вывести методами статистической термодинамики.

Иногда уравнения состояния реальных газов записывают через так называемые приведенные переменные, которые определяют через параметры критического состояния газов: pr = p / pкр, Vr = V / Vкр, Tr = T / Tкр, где критические параметры определяются как координаты точки перегиба на изотерме реального газа:

ПРИМЕРЫ

Пример 1-1. Докажите, что при больших объемах уравнение Ван-дер-Ваальса переходит в уравнение идеального газа.

Решение. Уравнение Ван-дер-Ваальса:

.

При больших объемах вторым слагаемым в правой части можно пренебречь: a/V 2 0. В знаменателе первого слагаемого можно пренебречь постоянной b: Vb V. В пределе получаем уравнение идеального газа:

.

Пример 1-2. Найдите вириальные коэффициенты Bi для газа, подчиняющегося уравнению Ван-дер-Ваальса.

Решение. В уравнении Ван-дер-Ваальса выделим сомножитель RT/V:

Если разложить первое слагаемое в скобке в ряд по степеням b/V, получим:

Из этого разложения следует, что второй вириальный коэффициент газа Ван-дер-Ваальса зависит от температуры:

, а остальные — постоянны: .

Пример 1-3. Найдите критические параметры и приведенное уравнение состояния для газа Дитеричи (I уравнение).

Решение. Запишем уравнение Дитеричи в виде:

и продифференцируем левую и правую часть этого уравнения два раза по объему при постоянной температуре:

и учтем, что в критической точке первая и вторая производная равны 0:

,

откуда находим: .

Если продифференцировать обе части уравнения состояния по объему один раз с учетом равенства нулю первой производной, то можно найти второе соотношение между критическими объемом и температурой:

,

.

Подставляя сюда первое найденное соотношение для критических параметров, получим:

И, наконец, подставляя эти параметры в уравнение состояния, находим критическое давление:

.

Для вывода приведенного уравнения состояния подставим в уравнение Дитеричи приведенные переменные:

, , .

В результате получаем приведенное уравнение Дитеричи, не содержащее индивидуальных параметров:

.

ЗАДАЧИ

1-1. Приведите пример термодинамического процесса, который может совершаться как обратимо, так и необратимо. Назовите для этого процесса по одной функции состояния и перехода.

1-2. Приведите примеры систем со временем релаксации порядка: а) секунд; б) часов; в) десятилетий.

1-3. Изменение теплоты в зависимости от температуры и объема в некоторой системе описывается уравнением:

(C и R — постоянные). Является ли теплота функцией состояния в данном случае? Ответ обоснуйте.

1-4. Докажите, что при больших объемах первое уравнение Дитеричи переходит в уравнение идеального газа.

1-5. Найдите частные производные и для: а) идеального газа; б) газа Ван-дер-Ваальса; в) газа, подчиняющегося I уравнению Дитеричи. Докажите, что .

1-6. Используя вириальные разложения (1.4) и (1.5), найдите связь между вириальными коэффициентами B2, B3 и B2‘, B3‘.

1-7. Найдите критические параметры и приведенные уравнения состояния для газов: а) Ван-дер-Ваальса; б) Бертло.

1-8. Предложено следующее уравнение состояния (для одного моля):

Выразите критические параметры через постоянные B и C и найдите фактор сжимаемости PV/RT в критической точке.

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору

Решение показательных уравнений с параметрами

Разделы: Математика

Цели урока: Учащиеся должны знать способы решений уравнений вида – показательная функция и уметь применять при решении задач.

Ход урока.

Для первой группы учащихся выдавались следующие задания.

Для каждого значения a решить уравнения:

Задания для второй группы учащихся.

Указать число решений в зависимости от параметра а.

Третья группа решает уравнения, сводящиеся к квадратным.

Задание 1. Решить уравнение p · 4 x – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Задание 2. При каких a уравнение 9 x + (2a + 4) · 3 x + 8a + 1 = 0 имеет единственное решение.

Задание 3. Указать число решений уравнения 49 x + 2p · 7 x + p 2 – 1 = 0 в зависимости от параметра p.

Задание 4. При каких значениях p уравнение 4 x – (5p – 3) · 2 x + 4p 2 – 3p = 0 имеет единственное решение.

Выступление первой группы – решение показательных уравнений вида

Докладывает лидер первой группы и привлекает к своему докладу участников этой группы. То есть диалог идёт ученик – ученик.

Решение исходного уравнения сводится к решению линейного уравнения с параметрами kx = b.

Если k = 0, b = 0, то 0 · x = 0, – любое действительное число.

Если k = 0, b ≠ 0, то 0 · x = b – нет решений.

Если k ≠ 0, то , один корень.

Задание 1. Решить уравнение .

Докладчик решает у доски с комментариями, остальные записывают в тетрадях.

Значит уравнение (1) можно представить в виде (a – 1)(a + 4)x = (a – 1)(a – 1)(a – 3).

Исследуем полученное уравнение:

Ответ:

На этом выступление первой группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 1.

Выступление второй группы – решение уравнений вида

Докладывает лидер второй группы и привлекает к обсуждению этого вопроса всех учащихся. Исходное уравнение равносильно уравнению ax 2 + bx + c1 = c0, или ax 2 + bx + c = 0.

Далее идёт диалог ученик–ученик.

  1. Какое уравнение получили? – Это уравнение степени не выше второй.
  2. При a = 0, bx + c = 0, получили линейное уравнение, которое может иметь одно решение, не иметь корней, или иметь бесконечное множество решений.
  3. При a ≠ 0, ax 2 + bx + c = 0, квадратное уравнение.
  4. От чего зависит число решений квадратного уравнения? – Число решений квадратного уравнения зависит от дискриминанта. Если D = 0 то квадратное уравнение имеет одно решение. Если D > 0, то два решения. Если D 2 + 2(a + 3)x + a + 2 = 0.

Ответ:

На этом выступление второй группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 2.

Выступление третьей группы – решение уравнений вида af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Слово предоставляется выступающему от третьей группы. Он докладывает, что их группа решала уравнения вида: (1) af 2 (x) + bf(x) + c = 0, где f(x) – показательная функция. Способ решения – введение новой переменной. f(x) = t, t > 0.

Исходное уравнение (1) равносильно

Далее докладчик задаёт вопросы, а учащиеся отвечают на них.

При каких условиях уравнение (1) имеет один корень?

  1. При a = 0 уравнение (2) становится линейным, значит может иметь только один корень, и он должен быть положительным.
  2. Если D = 0, уравнение (2) имеет один корень, и он должен быть положительным.
  3. Если D > 0, уравнение (2) имеет два корня, но они должны быть различных знаков.
  4. Если D > 0, уравнение (2) имеет два корня, но один из низ нуль. А второй положительный.

При каких условиях уравнение (1) имеет два корня?

Исходное уравнение имеет два корня, если уравнение (2) имеет два корня и оба они положительны.

При каких условиях уравнение (1) не имеет корней?

    Если Dx – 4 · 2 x + 1 = 0 и указать число решений в зависимости от параметра p.

Ответим на вопрос: При каких значениях p уравнение (1) имеет один корень?

  • Если одно решение. Обсуждается вопрос какие ещё могли быть варианты при t = 0 – нет решений, при t 0.

Уравнение будет иметь единственное решение при условии. Что дискриминант уравнения (2) есть число положительное, но корни при этом имеют различные знаки. Эти условия достигаются с помощью теоремы Виета. Чтобы корни квадратного трёхчлена были действительными и имели различные знаки, необходимо и достаточно выполнение соотношений.

Итак, уравнение (1) имеет единственное решение при p ≤ 0, p = 4.

Теперь остаётся ответить на вопрос. При каких условиях исходное уравнение (2) имеет два решения? Это возможно, если уравнение (2) имеет два корня и оба они положительны. По теореме Виета для того, чтобы корни квадратного трёхчлена были действительными и при этом оба были положительными, необходимо и достаточно выполнение соотношений.

Исходное уравнение имеет два корня при 0 0, то уравнение (2) имеет корни, но они оба отрицательны.

Итак, D 4. При p > 4 – нет решений. Второе условие равносильно следующим соотношениям.

Значит уравнение (1) не имеет решений при p > 4.

Ответ:

  1. При p = 4, p ≤ 0 одно решение.
  2. При 0 4 нет решений.

На этом выступление третьей группы закончено. Решение остальных заданий этой группы см. Приложение, стр. 3.

Домашнее задание.

Задание 1. Найти все значения параметра a, при которых уравнение (a – 3) · 4 x – 8 · 6 x + (a +3) 9 x = 0 не имеет корней.

Задание 2.Указать число решений уравнения p · 2 x + 2 –x – 5 = 0 в зависимости от параметра p.

Задание 3. Выяснить при каких значениях a уравнение . имеет решения, найти эти решения.

Задание 4. Найти все значения p при которых уравнение (p – 1) · 4 x – 4 · 2 x + (p + 2) = 0 имеет хотя бы одно решение.

Задание 5. Указать число решений уравнения a · 12 |x| = 2 – 12 |x| в зависимости от параметра a.

Квадратные уравнения и квадратичные неравенства с параметрами

Дорогой друг! Если ты никогда не решал задач с параметрами – прочитай статьи «Что такое параметр» и «Графический способ решения задач с параметрами». Квадратные уравнения, а тем более неравенства с параметрами только на первый взгляд кажутся простыми. Чтобы уверенно решать их, надо знать определенные приемы. О некоторых мы расскажем.

Разберем сначала подготовительные задачи. А в конце – реальную задачу ЕГЭ.

1. Найдите все значения a, при которых уравнение не имеет действительных корней.

Всегда ли это уравнение является квадратным относительно переменной х? – Нет, не всегда. В случае, когда коэффициент при равен нулю, оно станет линейным.

Рассмотрим два случая – когда это уравнение квадратное и когда оно линейное.

Тогда уравнение примет вид 2 = 0. Такое уравнение не имеет действительных корней, что удовлетворяет условию задачи.

Уравнение будет квадратным. Квадратное уравнение не имеет действительных корней тогда и только тогда, когда его дискриминант отрицательный.

Если и – корни квадратного уравнения
, то по теореме Виета:

Решим первое неравенство системы

Квадратный трехчлен в левой части не имеет корней, так как дискриминант равен -32, то есть отрицателен. Поэтому неравенство будет выполняться для всех действительных значений .

Возведем второе уравнение системы в квадрат:

Из этих двух уравнений выразим сумму квадратов и .

Значит, сумму квадратов корней уравнения можно выразить через параметр

График функции — парабола, ее ветви направлены вверх, минимум будет достигаться в ее вершине. Найдем вершину параболы:

3) Найдите все значения , при каждом из которых все решения уравнения

Как и в первой задаче, уравнение является квадратным, кроме случая, когда . Рассмотрим этот случай отдельно

1) . Получим линейное уравнение

У него единственный корень, причем положительный. Это удовлетворяет условию задачи.

2) При уравнение будет квадратным. Нам надо, чтобы решения существовали, причем были положительными. Раз решения есть, то .

Покажем один из приемов решения квадратичных уравнений и неравенств с параметрами. Он основан на следующих простых утверждениях:

— Оба корня квадратного уравнения и положительны тогда и только тогда, когда их сумма положительна и произведение положительно.

Очевидно, что сумма и произведение двух положительных чисел также положительны. И наоборот – если сумма и произведение двух чисел положительны, то и сами числа положительны.

— Оба корня квадратного уравнения и отрицательны тогда и только тогда, когда их сумма отрицательна, а произведение положительно.

Корни квадратного уравнения и имеют разные знаки тогда и только тогда, когда их произведение отрицательно.

Сумма и произведение корней входят в формулировку теоремы Виета, которой мы и воспользуемся. Получим

Второе и третье неравенства имеют одинаковое решение . Решение первого неравенства:
.

С учетом пункта 1 получим ответ

4. При каких значениях параметра a уравнение

имеет единственное решение?

Уравнение является показательным, причем однородным. Мы умеем решать такие уравнения! Разделим обе части на .

Сделаем замену

Для того, чтобы исходное уравнение имело единственное решение, нужно, чтобы уравнение относительно t имело ровно один положительный корень.

1) В случае уравнение будет линейным

Значит, подходит. В этом случае уравнение имеет единственный положительный корень.

2) Если , уравнение будет квадратным.

Дискриминант является полным квадратом и поэтому всегда неотрицателен. Уравнение имеет либо один, либо два корня. В этом случае несложно найти корни в явном виде.

Один корень получился не зависящим от параметра, причем положительным. Это упрощает задачу.

Для того, чтобы уравнение имело единственный положительный корень, нужно, чтобы либо второй был отрицательным, либо равным нулю, либо чтобы корни совпадали. Рассмотрим все случаи.

Объединив все случаи, получим ответ.

И наконец – реальная задача ЕГЭ.

5. При каких значениях a система имеет единственное решение?

Решением квадратного неравенства может быть:

В каких случаях система двух квадратных неравенств имеет единственное решение:

1) единственная общая точка двух лучей-решений ( или интервалов-решений)

2) одно из неравенств имеет решение – точку, которая является решением второго неравенства

Рассмотрим первый случай.

Если является решением 1 и 2 уравнений, то является решением уравнения (вытекает из второго первое) ⇒ или

Если , при этом система примет вид:

Второй корень первого уравнения:

Второй корень второго первого:

Если , при этом система примет вид:

– бесконечно много решений, не подходит.

Рассмотрим второй случай.

– решением является точка, если – является решением второго неравенства.

– решением является точка, если – не является решением первого неравенства.


источники:

http://urok.1sept.ru/articles/518184

http://ege-study.ru/kvadratnye-uravneniya-i-kvadratichnye-neravenstva-s-parametrami/