Кто изобрел уравнение для идеальной и реальной жидкости

Модель идеальной жидкости. уравнения движения Л. Эйлера.

Модель идеальной жидкости. уравнения движения Л. Эйлера.

Модель идеальной жидкости. уравнения движения Л. Эйлера. Идеальная или невязкая жидкость-это упрощенная модель реальной (вязкой) жидкости. Предполагается, что идеальная жидкость обладает всеми свойствами реальной жидкости, за исключением вязкости, так что уравнение Навье-Стокса можно применить, установив p = 0 **для получения уравнения движения. Тогда уравнения движения вязкого газа (5.8) и движения вязкой несжимаемой жидкости (5.9) упрощаются, принимая вид: Ря ± ри -=*% -, p. = 4T -. (5.37)) * Р ДХ(к у РДУ Л1 Р ДГ 0I » Уравнение(5.37) называется уравнением Эйлера.

Они описывают идеальное движение жидкости по сжимаемости и несжимаемости. Их векторную форму можно легко получить из соответствующих уравнений Навье-Стокса и поместить в них V = 0. (5.10) найти (5.12) П (\!П) дгаи Р = yxdX,(5.38) Иначе говоря П-(1 / р) bgab п-ди / Д1 +(в) с,(5.39) И затем П (1 / р) dgayr-egyo = Ди / Д1-эээ. (5.40 утра )) Удобную форму уравнения сжимаемой жидкости для интегрирования можно получить, приняв прямое давление.

Колмогоров Андрей Николаевич (родился в 1903 году) ученый и выдающийся советский математик. Автор фундаментальных исследований в области теории вероятностей, теории функций, топологии и математической логики. Людмила Фирмаль

  • Он предложил много плодотворных идей в статистической теории турбулентности. В. Девяносто девять Четыре * Введение функций давления, определенных процессом (см.§ 4.1) и Формулой (4.5) (4.7).Уравнение (5.40) принимает вид Egayon(Φ+ ^ + sa / 2)= d / d1-их d. (5.41) Для несжимаемых жидкостей (5.42) (5.43) бгайо(Ф Р! п -) АСП / 2)= Ди / Д1-их& Используйте обозначение E =Φ+ k +для описания (5.41) в компактном векторном формате. -bgab E = di / d1-и XY или проекция оси Уравнения Эйлера и уравнения неразрывности для несжимаемых жидкостей образуют замкнутую систему. Для сжимаемых газов эта система должна быть добавлена по крайней мере к 1 уравнению, представляющему, например, баротропные условия или другую термодинамическую зависимость.
  • Граничные условия твердой поверхности для идеальной вязкой жидкости варьируются в широких пределах. Когда идеальная жидкость движется, частицы не прилипают к твердой поверхности, и жидкость скользит вдоль стенок. Граничным условием в этом случае является непроницаемость границы, что означает, что в случае неподвижной стенки нормальная составляющая скорости жидкости исчезает на границе И » | C =0.(5.45)) Это условие означает, что вектор скорости касается граничной поверхности. То есть граничная поверхность является обтекаемой. Поэтому любую линию течения идеальной жидкости можно считать сплошной границей, не нарушая структуру течения. Если идеальное движение жидкости является потенциальным, то условие (5.45) задается как: «Н | з = d0P / DN и 0 = 0, (5.46) Где 0p-потенциал скорости.

Для плоского течения с функцией потока φ (x, y) граничные условия твердой поверхности можно описать следующим образом: 1С Ф = ФО = сот!、 Оттуда, твердая стена 1 из потока, и значение функции потока φ0. Людмила Фирмаль

  • Сто Если граничная плоскость задается уравнением 5 (x, y, r)= 0, то 5-вектор, перпендикулярный этому plane. So условие(5.45)эквивалентно условию ортогональности вектора скорости стенки и / С и вектора§gas15.Поэтому скалярное произведение этих векторов в стенке равно нулю. ». Vg » 13 =и.+ |«, Н-|-«.0. (5.47) Для подвижных сплошных границ используются условия непрерывности течения и непроницаемости стенок. Это приводит к тому, что нормальная составляющая скорости n» |будет равна. С жидкостью и стенками. Если движущийся интерфейс задается уравнением 5 (x, y, 2, 0 = 0), то последнему условию можно придать другую форму. Если частица движется непрерывно, то ее координаты x(0, y (0, 2 (0)) должны всегда удовлетворять поверхности граничного уравнения, т. е. 5 [x ( * ), y(I), 2(1), Λ=0.ом8= 0.、 Граничные условия свободной поверхности идеальной и вязкой жидкости следующие.

Смотрите также:

Возможно эти страницы вам будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Идеальная и реальная жидкости. Закон Ньютона о внутреннем трении

Жидкость– физическое тело, молекулы которого слабо связаны между собой. Поэтому незначительные силы способны легко изменить форму жидкости, которая способна сохранить объем, но не форму. В гидравлике жидкость рассматривают как непрерывную среду, заполняющую пространство без пустот и промежутков, т.е. отвлекаются от молекулярного строения жидкости и её частицы, даже бесконечно малые, считают состоящими из большого числа молекул.

Реальной жидкостью называют жидкость, обладающую вязкостью (свойство жидкости сопротивляться сдвигу ее слоев).

Идеальная или невязкая жидкость является упрощенной моделью реальной (вязкой) жидкости. По предположению, идеальная жидкость имеет все свойства реальной, кроме вязкости. рис. 1.1 Профиль скоростей течения жидкости.

Явление внутреннего трения с макроскопической точки зрения связано с возникновением сил трения между слоями газа или жидкости, перемещающимися параллельно друг другу с различными по величине скоростями. Со стороны слоя, движущегося быстрее, на более медленно движущийся слой действует ускоряющая сила. Наоборот, медленно перемещающийся слой тормозит более быстро движущиеся слои газа. Силы трения, которые при этом возникают, направлены по касательной к поверхности соприкосновения слоев.

Рассмотрим известный опыт Ньютона. Пусть имеются две параллельные пластинки (рис. 1), между которыми находится газ (жидкость).

Читайте также:
  1. A. соблюдение законности
  2. Communio. Право на долю вещи и доля права на вещь (реальная и идеальная доли). Правовой режим res communes.
  3. D) легальное, регламентированное законом участие.
  4. D) Палата представителей рассматривает проекты законов по всем направлениям внутренней и внешней политики.
  5. II. ВОДОПРОНИЦАЕМОСТЬ ГРУНТОВ, ЗАКОН ЛАМИНАРНОЙ ФИЛЬТРАЦИИ
  6. O Отклик подчиняется нормальному закону распределения.
  7. Аналогия права и аналогия закона.
  8. Аномально-вязкие нефти. Структурированные (неньютоновские) жидкости.
  9. Антимонопольное законодательство в РФ
  10. Антитрестовское законодательство США

Расстояние между пластинками h. Нижнюю пластинку будем удерживать неподвижно, верхнюю заставим двигаться в одном и том же направлении в своей плоскости с постоянной скоростью u0.

Слой газа, непосредственно прилегающий к верхней пластинке, будет иметь ту же скорость u0, что и пластинка, слой же газа, прилегающий к нижней пластинке, находится в покое. Как показывает опыт, любой промежуточный слой движется со скоростью u, пропорциональной расстоянию x от неподвижной пластинки, т. е.


Постоянная a определяется из условия, что при x = h u = u0, т. е. u0 = ah. Откуда a = u0/h. Тогда выражение (3.3.1) примет вид

Таким образом, к верхней пластинке приложена сила F1, лежащая в ее плоскости и имеющая то же направление, что и направление движения пластинки. Так как пластинка движется с постоянной скоростью u0, то на пластинку должна действовать такая же по величине, но противоположно направленная сила F со стороны газа, которую назовем силой вязкого трения.

Из опыта следует, что абсолютная величина силы F1 пропорциональна скорости u0, с которой мы двигаем пластинку, и площади пластины, т. е.

где – постоянный коэффициент пропорциональности, который называют коэффициентом вязкого трения.

21. Аномальные жидкости, отличающиеся по своим реологическим характеристикам от ньютоновской вязкой жидкости, широко используются в техно; логических процессах, связанных с переработкой полимеров и суспензий естественными аномальными жидкостями являются и многие нефти, биологические жидкости и коллоидные растворы, подобные раствору глинистых частиц в воде. Поэтому изучение движения аномальных жидкостей в пористой среде имеет большое прикладное значение для нефтяной и газовой промышленности и химической технологии.

Всеаномальные жидкости разделяют на три класса: стационарно реологические ( не изменяющиеся во времени) — вязкопластичные, псевдопластичные и дилатантные; нестационарно реологические; вязкоупругие жидкости. Свойства и фильтрация некоторых аномальных жидкостей изучаются в физике пласта и подземной гидрогазодинамике. Эффективная ( кажущаяся) вязкость, определяемая на реограмме котангенсами угла наклона к оси т прямых, соединяющих начало координат с точками кривой течения ( точки А, А %, Аз на рис. 2.6), переменна.

Дляаномальной жидкости закон Дарси нарушается. Элементарные акты на капиллярных моделях пористых сред позволяют видеть качественную связь между реологическими и фильтрационными аномалиями.

Вязкостьаномальных жидкостей ( так называемая структурная вязкость) при заданных температуре и давлении непостоянна и изменяется в зависимости от градиента скорости du / dy по мере разрушения структуры жидкости, а следовательно, не является физической константой, как вязкость нормальных жидкостей.

Вода -аномальная жидкость: имеет наибольшую плотность ( наименьший удельный объем) при 4 С, при нагревании от 0 до 4 С ее объем сначала уменьшается, а затем увеличивается, принимая при 8 С то же значение, что — и при 0 С.

Дата добавления: 2015-04-18 ; просмотров: 20 ; Нарушение авторских прав

Уравнение Бернулли

Уравнение Бернулли для струйки жидкости формулируется следующим образом: для элементарной струйки идеальной жидкости полная удельная энергия, т.е. сумма удельной энергии положения, удельной энергии давления и кинетической удельной энергии – есть величина постоянная во всех сечениях струйки.

Уравнение Бернулли выглядит так:

Подробное описание всех входящих в состав уравнения параметров уже описан в этой статье.

Содержание статьи

Смысл уравнения Бернулли

По существу вывода уравнение Бернулли для струйки идеальной жидкости представляет собой закон сохранения механической энергии, составленный применительно к единице массового расхода жидкости. Это следует из того, что в процессе вывода значения работы сил, приложенных к выделенному объему струйки и значения кинетической энергии этого объема были поделены на величину ρqΔT.

Отсюда вытекает, что поскольку член υ 2 /2 является мерой кинетической энергии единицы массы движущейся жидкости, то сумма членов gz+p/ρ будет мерилом ее потенциальной энергии.

В отношении величины gz это очевидно, ведь если частица жидкости массы m расположена на высоте z относительно некоторой плоскости и находится под действием сил тяжести, то способность ее совершить работу, т.е. её потенциальная энергия относительно этой плоскости равняется mgz. Но если её поделить на массу частиц m, то эта часть потенциальной энергии даст величину gz.

Для более ясного физического представления о том, что потенциальная энергия измеряется величиной p/ρ рассмотрим такую схему: пусть к трубе, заполненной жидкостью с избыточным давлением p, присоединен пьезометр, снабженный на входе в него краном.

Кран сначала закрыт, т.е. пьезометр свободен от жидкости, а элементарный объем жидкости ΔV массой ρ*ΔV перед краном находится под давлением p.

Если затем открыть кран, то жидкость в пьезометре поднимется на некоторую высоту, равную

Таким образом, единица массы, находящейся под давлением p, как бы несет в себе ещё заряд потенциальной энергии, определяемой величиной p/ρ.

В гидравлике для характеристики удельной энергии обычно используется понятие напор, под которым понимают энергию жидкости, отнесенную к единице силы тяжести, а не её массы. В соответствии с этим уравнение Бернулли записанное в начале этой статьи примет вид

Такое уравнение Бернулли для элементарной струйки идеальной жидкости в другой форме, весьма удобно для гидравлических расчетов и может быть сформулировано следующим образом.

Для элементарной струйки идеальной жидкости полный напор, т.е. сумма геометрического, пьезометрического и скоростного напоров, есть величина постоянная во всех её сечениях.

Отсюда следует, что между напором и удельной энергией существует очень простая зависимость

где э – удельная энергия

Уравнение Бернулли для элементарной струйки реальной жидкости

Если вместо идеальной жидкости рассматривать жидкость реальную, то уравнение Бернулли для реальной жидкости должно принять несколько другой вид.

При движении идеальной жидкости её полная удельная энергия или напор сохраняет постоянное значение по длине струйки, а при движении реальной жидкости эта энергия будет убывать по направлению движения. Причиной этого являются затраты энергии на преодоление сопротивлений движению, обусловленные внутренним трением в вязкой жидкости.

Если же мы рассмотрим два сечения для струйки идеальной жидкости: 1-1 в начале и 2-2 в конце струйки, то полная удельная энергия будет

Полная удельная энергия для сечения 1-1 всегда будет больше, чем полная удельная энергия для сечения 2-2 на некоторую величину потерь, и уравнение Бернулли в этом случае получается

Величина Э1-2 представляет собой меру энергии, потерянную единицей массы жидкости на преодоление сопротивлений при её движениями между указанными сечениями.

Соответствующий этой потере удельной энергии напор называют потерей напора между сечениями 1-1 и 2-2 и обозначают h1-2 . Поэтому уравнение Бернулли для элементарной струйки реальной жидкости можно представить в виде

Уравнение Бернулли для потока реальной жидкости

Уравнение Бернулли для струйки реальной жидкости это еще только половина дела, ведь в при решении различных практических вопросов о движении жидкостей приходится иметь дело с потоками конечных размеров. Уравнение Бернулли в этом случае может быть получено, исходя из рассмотрения потока как совокупности множества элементарных струек.

Учитывая, что все струйки движутся с одной и той же средней скоростью форма записи уравнения Бернулли для потока идеальной жидкости становится идентичной его записи для элементарной струйки.

В таком виде уравнение Бернулли обычно и применяется при решении практических задач для потоков однородной несжимаемой жидкости при установившемся движении, происходящем под действием одной силы тяжести.

Такое уравнение составляется для различных живых сечений потока, вблизи которых движение жидкости должно удовлетворять условиям медленно изменяющегося движения, хотя на пути между этими сечениями движение может и не удовлетворять указанным условиям.

Слагаемое h1-2 в этом уравнении показывает потери напора на преодоление сопротивлений движению жидкости. При этом в гидравлике различают два основных вида сопротивлений:
— hлп — линейные потери — сопротивления, проявляющиеся по всей длине потока, обусловленные силами трения частиц жидкости друг о друга и о стенки, ограничивающие поток.
— hмп — местные потери – местные сопротивления, обусловленные различного рода препятствиями, устанавливаемыми в потоке (задвижка, кран, колено), приводящими к изменениям величины или направления скорости течения жидкости

Поэтому полная потеря напора между двумя сечениями потока при наличии сопротивлений обоих видов будет

Видео по теме

Уравнение Бернулли подходит и для газов. Явление уменьшения давления при повышении скорости потока является основой работы различных приборов для измерения расхода. Закон Бернулли справедлив и для жидкостей вязкость которых равна нулю. При описании течения таких жидкостей используют уравнение Бернулли с добавлением слагаемых учитывающих потери на местные сопротивления.


источники:

http://lektsii.com/2-8671.html

http://www.nektonnasos.ru/article/gidravlika/uravnenie-bernulli/