Кубические уравнения огэ по математике

Задание №21 ОГЭ по математике

Решение уравнений

В данном задании необходимо решить уравнение степени больше двух — это может быть биквадратное или кубическое уравнение. Ниже мы приводим алгоритмы решения типовых заданий!

Разбор типовых вариантов задания №21 ОГЭ по математике

Демонстрационный вариант ОГЭ 2019

Алгоритм решения:
  1. Определить тип уравнения.
  2. Перенести правую часть уравнения в левую.
  3. Привести уравнение к виду, при котором можно его многочлен слева разложить на множители.
  4. Разложить на множители.
  5. Приравнять каждый множитель к нулю
  6. Решить полученные уравнения.
  7. Записать ответ.
Решение:

1. Уравнение четвертой степени.

2. Перенесем правую часть уравнения в левую:

x 4 — (4x — 5) 2 = 0

3. Уравнение уже приведено к виду, при котором можно его левую часть разложить на множители.

4. Данное уравнение разложим на множители по формуле разности квадратов. Получим:

(х 2 – (4х-5))( х 2 + (4х-5)) = 0, или (х 2 – 4х+5)(х 2 + 4х-5) = 0.

5. Приравняем каждый множитель к нулю:

х 2 – 4х+5 = 0 и х 2 + 4х-5 = 0

6. Решим каждое из уравнений по формулам дискриминанта и корней:

Для первого уравнения:

D = b 2 -4ac = 16-20 = — 4, это означает, что первое уравнение х 2 – 4х+5 = 0 не имеет корней.

Для второго уравнения:

Определим корни второго уравнения:

Получили два корня: -5; 1.

Первый вариант задания

Алгоритм решения:
  1. Определить тип уравнения.
  2. Найти делители свободного члена уравнения.
  3. Определить среди делителей один из корней.
  4. Выполнить деление кубического многочлена на выражение х-а, где а – найденный корень.
  5. Записать получившийся в результате деления квадратный трехчлен и составим уравнение.
  6. Решить уравнение.
  7. Записать ответ.
Решение:

1. Перед нами уравнение третьей степени общего типа.

2. Найдем делители свободного члена данного уравнения. Это числа: 1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12;.18; -18; 36; -36.

3. Рассмотрим числа 1; -1; 2; -2; 3; -3. Это наименьшие среди найденных делителей. Подставим их по очереди в уравнение вместо х:

  • для x=1: — не подходит;
  • для x=-1: — не подходит;
  • для х=2: 2 3 +4∙2 2 -9∙2=8=16-18-36=-38≠0 — не подходит;
  • для х=-2: (-2) 3 +4∙(-2) 2 -9∙(-2)-36=-8+16+18-36=-10≠0 – не подходит;
  • для x=3: — подходит.

Мы нашли один корень.

4. Теперь выполним деление кубического многочлена на x-3, воспользовавшись схемой Горнера, имеем:

14-9-36
317120

Искать квадратный трехчлен можно другим способом, выполнив деление многочлена столбиком:

5. После деления получаем квадратный трехчлен:

Составим квадратное уравнение для вычисления оставшихся двух корней:

6. Решим его с помощью формул корней и дискриминанта

7. Получили три корня 3; -3; -4.

Второй вариант задания

Алгоритм решения:
  1. Определить тип уравнения.
  2. Найти делители свободного члена уравнения.
  3. Определить среди делителей один из корней.
  4. Выполнить деление кубического многочлена на выражение х-а, где а – найденный корень.
  5. Записать получившийся в результате деления квадратный трехчлен и составим уравнение.
  6. Решить уравнение.
  7. Записать ответ.

1. Перед нами кубическое уравнение общего вида.

2. Найдем делители свободного члена уравнения. Это числа: 1; -1 и 2; -2.

3. Определим один из корней кубического уравнения среди делителей свободного члена .Для этого подставим каждый из этих делителей вместо x и проверим, какой их них является корнем:

— для x=1: — подходит это и есть один из корней.

4. Теперь выполним деление кубического многочлена на x-1, воспользовавшись схемой Горнера, имеем:

12-1-2
11320

Искать квадратный трехчлен можно другим способом, выполнив деление многочлена столбиком:

5. Получаем квадратный трехчлен

6. Составим и решим квадратное уравнение для вычисления оставшихся двух корней. Для этого воспользуемся формулами корней квадратного уравнения и дискриминантом.

ОГЭ 2018. Алгебра. 2 часть, задание №21 с решением.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Задание 21. Решите уравнение

Решение. 1. Найдем один из корней кубического уравнения. Для этого рассмотрим числа 1; -1 и 3; -3 (наименьшие делители свободного члена кубического уравнения). Путем подстановки каждого из этих числе вместо x, проверим, является ли один из них корнем (для этого уравнение должно быть равно 0):

— для x=1: — не подходит;

— для x=-1: — не подходит;

— для x= 3: — подходит.

2. Теперь выполним деление кубического многочлена на x-3, воспользовавшись схемой Горнера, имеем:

3. Получаем квадратное уравнение для вычисления оставшихся двух корней:

х 1 = -3, х 2 = -4

Получили три корня 3; -3; -4. Ответ: 3; -3; -4.

Задание 21. Решите уравнение

1. Найдем один из корней кубического уравнения. Для этого рассмотрим числа 1; -1 и 2; -2 (делители свободного члена кубического уравнения). Путем подстановки каждого из этих чисел вместо x, проверим, является ли один из них корнем (для этого уравнение должно быть равно 0):

— для x=1: — подходит (один из корней).

2. Теперь выполним деление кубического многочлена на x-1, воспользовавшись схемой Горнера, имеем:

3. Получаем квадратное уравнение для вычисления оставшихся двух корней:

х 1 = -1, х 2 = -2 Получили три корня -2; -1; 1.

Задание 21. Решите уравнение

Решение. 1. Найдем один из корней кубического уравнения. Для этого рассмотрим числа 1; -1 и 3; -3 (делители свободного члена кубического уравнения). Путем подстановки каждого из этих чисел вместо x, проверим, является ли один из них корнем (для этого уравнение должно быть равно 0):

— для x=1: — не подходит;

— для x=-1: — не подходит;

— для x=3: — подходит (один из корней).

2. Теперь выполним деление кубического многочлена на x-3, воспользовавшись схемой Горнера, имеем:

3. Получаем квадратное уравнение для вычисления оставшихся двух корней:

х 1 = -3, х 2 = -5. Получили три корня -5; -3; 3. Ответ: -5; -3; 3.

Задание 21. Решите уравнение

1. Извлечем кубический корень из левой и правой частей уравнения, получим:

2. Решаем квадратное уравнение, получаем два корня:

Задание 21. Решите уравнение

Возьмем корень третьей степени из обеих частей уравнения, получим:

Решим квадратное уравнение:

Задание 21. Решите уравнение

Возьмем корень кубической степени от обеих частей уравнения, получим:

Решаем квадратное уравнение, имеем два корня:

Задание 21. Решите уравнение .

Решение. 1. Запишем ОДЗ уравнения:

.

2. Упросим уравнение и найдем его корни:

Решаем квадратное уравнение, получаем:

х1 = 6, х2 = -3

Из двух корней только один x=-3 удовлетворяет ОДЗ. Ответ: -3.

Задание 21. Решите уравнение .

1. Запишем ОДЗ уравнения:

.

2. Упростим уравнение, получим:

Решаем квадратное уравнение, получаем корни:

Только один корень x=-4 удовлетворяет ОДЗ.

Задание 21. Решите уравнение x^3 + 6x^2 = 4x + 24.

Решение. Упростим выражение, приведем его к виду:

Данное выражение равно 0, если хотя бы один из сомножителей равен 0, то есть имеем два уравнения:

и

Получаем три корня: -6; -2; 2.

Задание 21. Решите уравнение x^3+4x^2 = 9x +36.

Решение. Сначала преобразуем выражение: в левой части вынесем за скобку, а в правой части вынесем 9 за скобку, получим:

Последнее выражение будет равно нулю, если хотя бы один из множителей равен нулю. То есть, имеем два уравнения:

и

Задание 21. Сократите дробь .

Заметим, что число , а число . Учитывая это, исходное выражение примет вид:

Задание 21. Сократите дробь .

Учитывая, что и , получим:

Задание 21. Решите систему уравнений

Решение. Для решения данной системы можно вычесть второе уравнение из первого, это позволит избавиться от переменной y, получим:

Решаем квадратное уравнение через дискриминант, имеем два корня:

Для каждого из найденных корней найдем соответствующее значение y, подставив во второе уравнение:

и Ответ: (1;-4), (1,8; 0).

Задание 21. Решите систему уравнений

Решение. Так как оба уравнения равны одному и тому же значению y, то их можно приравнять, получим:

, откуда

Полученное выражение будет равно 0, если

или

Найдем теперь значения y для каждого x, имеем:

и

Задание 21. Решите систему уравнений

Решение. Разделим первое уравнение на 2, а второе – на 4, получим:

Видим, что у обоих уравнений есть слагаемое . Чтобы избавиться от него, вычтем из первого уравнения второе:

Теперь вычислим значение y при x=12, подставив x в первое уравнение, имеем:

следовательно, .

Таким образом, имеем решение (2, -2), (2,2). Ответ: (2, -2), (2,2).

Задание 21. Решите систему уравнений

Решение. Разделим второе уравнение на 2, получим систему

и вычтем из первого уравнения второе:

Для значения x=2 найдем соответствующие значения y, подставив x в первое уравнение:

То есть имеем два решения: (2;-3) и (2;3).

Задание 21. Решите уравнение

Решение. Преобразуем уравнение, приведем его к следующему виду:

Полученное выражение будет равно 0, если или, если

Таким образом, получили следующие корни: -4; -3; 2. Ответ: -4; -3; 2.

Задание 21. Решите уравнение .

Решение. Упростим выражение, перепишем его в следующем виде:

Полученное выражение будет равно 0, если или когда

Получили три корня: -5; -4; -3.

Задание 21. Решите систему уравнений

Сложим оба уравнения, получим:

Для найденных корней x вычислим из первой формулы соответствующие значения y, имеем:

— для : ;

— для : .

Получили два решения: (-1;5), (1;5).

Задание 21. Решите систему уравнений

Сложим оба уравнения, получим:

Вычислим соответствующие значения y при x=-2 и 2, подставив эти значения в первую формулу системы:

— при x=-2: ;

— при x=2: .

Имеем следующие решения: (-2; 3) и (2; 3).

Задание 21. Решите неравенство .

Решение. Можно заметить, что данное неравенство будет больше либо равно 0, если

. Преобразуем данное выражение, перепишем его в виде:

Из последнего выражения имеем две точки, делящие числовую ось:

и .

Ответ: .

Задание 21. Решите неравенство .

Решение. Из неравенства можно видеть, что оно будет соблюдаться, если

.

Перепишем его в следующем виде:

Последнее выражение дает две точки, делящие числовую ось:

и

.

Ответ: .

Задание 21. Решите неравенство

Сложим оба уравнения системы, избавимся таким образом от переменной y, получим:

Теперь, для каждого из найденных x, вычислим y из первого уравнения:

Получаем решения: (-1; 8), (1; 8).

Задание 21. Решите неравенство

Сложим оба уравнения системы, избавимся от переменной y, получим:

Для каждого найденного корня x вычислим соответствующее значение y из первого уравнения, имеем:

То есть получили следующие решения: (-2; 1), (2; 1).

Задание 21. Найдите значение выражения 28a-7b+40, если .

Приведем выражение к виду , получим:

Ответ: 5.

Задание 21. Найдите значение выражения 33a-23b+71, если .

Приведем выражение к выражению , получим:

Задание 21. Решите уравнение .

Решение. Учитывая, что слагаемые в уравнении всегда больше либо равны 0, то уравнение будет равно нулю, если каждое из слагаемых равно нулю. Соответственно, получаем следующую систему уравнений:

Из первого уравнения имеем корни

Из второго уравнения, получаем следующие два корня:

Из полученных значений видно, что оба уравнения одновременно будут принимать значение 0 при x=-5.

Задание 21. Решите уравнение .

Решение. Любое число в квадрате всегда больше 0, следовательно, уравнение будет равно 0, если оба слагаемых равны 0. Это условие можно записать в виде следующей системы:

Из первого уравнения получаем два корня:

Из второго уравнения, имеем корни:

Общий корень, при котором оба уравнения переходят в 0, равен -4. Ответ: -4.

Задание 21. Решите уравнение .

Упростим уравнение, приведем его к следующему виду:

Данное уравнение будет равно 0, если

Решаем первое квадратное уравнение, получаем корни:

Оба корня удовлетворяют неравенству , следовательно, они являются решениями уравнения.

Ответ: .

Задание 21. Решите уравнение .

Преобразуем уравнение к виду

Данное уравнение будет равно 0, если

Найдем корни уравнения из квадратного уравнения:

Оба корня не равны 0, следовательно, являются решениями уравнения.

Ответ: .

Задание 21. Решите уравнение .

Сначала преобразуем выражение, получим:

Последнее выражение показывает, что уравнение будет равно 0, если хотя бы один из множителей будет равен 0, то есть имеем 3 уравнения и 3 корня:

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x iКоэффициенты многочлена
2— 11129
— 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.


источники:

http://infourok.ru/oge-algebra-chast-zadanie-s-resheniem-2445186.html

http://zaochnik.com/spravochnik/matematika/systems/reshenie-kubicheskih-uravnenij/