Кубические уравнения задания для самостоятельной работы

«Решение уравнений высших степеней». 9-й класс

Разделы: Математика

Класс: 9

Учебная:

  • Углубить знания учащихся по теме “ Решение уравнений высших степеней” и обобщить учебный материал.
  • Познакомить учащихся с приёмами решения уравнений высших степеней.
  • Научить учащихся применять теорию делимости при решения уравнений высших степеней.
  • Научить учащихся выполнять деление “уголком” многочлена на многочлен.
  • Развивать умения и навыки работы с уравнениями высших степеней.
  • Развивающая:

    1. Развитие внимания учащихся.
    2. Развитие умения добиваться результатов труда.
    3. Развитие интереса к изучению алгебры и навыков самостоятельной работы.

    Воспитывающая:

  • Воспитание чувства коллективизма.
  • Формирование чувства ответственности за результат работы.
  • Формирование у учащихся адекватной самооценки при выборе отметки за работу на уроке.
  • Оборудование: компьютер, проектор.

    1 этап работы. Организационный момент.

    2 этап работы. Мотивация и выход на постановку проблемы

    Уравнение одно из важнейших понятий математики. Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры.

    В школьном курсе изучения математики очень много внимания уделяется решению различного вида уравнений. До девятого класса мы умели решать только линейные и квадратные уравнения. Уравнения третьей, четвёртой и т.д. степеней называются уравнениями высших степеней. В девятом классе мы познакомились с двумя основными приёмами решения некоторых уравнений третьей и четвёртой степеней: разложение многочлена на множители и использование замены переменной.

    А можно ли решить уравнения более высоких степеней? На этот вопрос мы постараемся сегодня найти ответ.

    3 этап работы. Повторить ранее изученный материал. Ввести понятие уравнения высших степеней.

    1) Решение линейного уравнения.

    Линейным называется уравнение вида , где по определению. Такое уравнение имеет единственный корень .

    2) Решение квадратного уравнения.

    Квадратным называется уравнение вида , где . Количество корней и сами корни определяются дискриминантом уравнения . Для уравнение корней не имеет, для имеет один корень (два одинаковых корня)

    , для имеет два различных корня .

    Из рассмотренных линейных и квадратных уравнений видим, что количество корней уравнения не более его степени. В курсе высшей алгебры доказывается, что уравнение -й степени имеет не более n корней. Что касается самих корней, то тут ситуация намного сложнее. Для уравнений третьей и четвёртой степеней известны формулы для нахождения корней. Однако эти формулы очень сложны и громоздки и практического применения не имеют. Для уравнений пятой и более высоких степеней общих формул не существует и существовать не может (как было доказано в XIX в. Н. Абелем и Э. Галуа).

    Будем называть уравнения третьей, четвёртой и т.д. степеней уравнениями высших степеней. Некоторые уравнения высоких степеней удаётся решить с помощью двух основных приёмов: разложением многочлена на множители или с использованием замены переменной.

    3) Решение кубического уравнения.

    Решим кубическое уравнение

    Сгруппируем члены многочлена, стоящего в левой части уравнения, и разложим на множители. Получим:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три линейных уравнения:

    Итак, данное кубическое уравнение имеет три корня: ; ;.

    4) Решение биквадратного уравнения.

    Очень распространены биквадратные уравнения, которые имеют вид (т.е. уравнения, квадратные относительно ). Для их решения вводят новую переменную .

    Решим биквадратное уравнение .

    Введём новую переменную и получим квадратное уравнение , корнями которого являются числа и 4.

    Вернёмся к старой переменной и получим два простейших квадратных уравнения:

    (корни и )

    (корни и )

    Итак, данное биквадратное уравнение имеет четыре корня:

    ; ;.

    Попробуем решить уравнение используя выше изложенные приёмы.

    4 этап работы. Привести некоторые утверждения о корнях многочлена вида , где многочлен n-й степени

    Приведём некоторые утверждения о корнях многочлена вида :

    1) Многочлен -й степени имеет не более корней (с учётом их кратностей). Например, многочлен третьей степени не может иметь четыре корня.

    2) Многочлен нечётной степени имеет хотя бы один корень. Например, многочлены первой, третьей, пятой и т.д. степени имеют хотя бы один корень. Многочлены чётной степени корней могут и не иметь.

    3) Если на концах отрезка значения многочлена имеют разные знаки (т.е. ,), то на интервале находится хотя бы один корень. Это утверждение широко используется для приближенного вычисления корней многочлена.

    4) Если число является корнем многочлена вида , то этот многочлен можно представить в виде произведения , где многочлен (-й степени. Другими словами, многочлена вида можно разделить без остатка на двучлен . Это позволяет уравнение -й степени сводить к уравнению (-й степени (понижать степень уравнения).

    5) Если уравнение со всеми целыми коэффициентами (причём свободный член ) имеет целый корень , то этот корень является делителем свободного члена . Такое утверждение позволяет подобрать целый корень многочлена (если он есть).

    5 этап работы. Показать как применяется теория делимости для решения уравнений высших степеней. Рассмотреть примеры решения уравнений высших степеней , в которых для разложения левой части на множители используется способ деления многочлена на многочлен “уголком”.

    Пример 1. Решим уравнение .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (-1), т.е. равняется одному из чисел: . Проверка показывает, что корнем уравнения является число -1. Значит, многочлен можно представить в виде произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы фактически разложили левую часть уравнения на множители:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем два уравнения:

    Итак, данное уравнение имеет три корня:

    Пример 2. Решим уравнение .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (9),т.е. равняется одному из чисел: ;. Проверим:

    Значит, многочлен можно представить в виде произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы разложили левую часть уравнения на множители:

    Аналогичным образом поступим и с многочленом .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (9), т.е. равняется одному из чисел: ;. Проверим:

    Значит, многочлен можно представить в виде

    произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы разложили левую часть исходного уравнения на множители:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три уравнения:

    Итак, данное уравнение имеет четыре корня:

    6 этап работы. Закрепление изученного материала.

    Решите уравнения высших степеней, используя способ деления многочлена на многочлен “уголком”.

    7 этап работы. Вывод урока.

    Решить уравнения высших степеней можно следующим образом:

    • используя формулы для нахождения корней (если они известны);
    • используя замену переменной;
    • раскладывая многочлен в левой части уравнения на множители, используя способ деления многочлена на многочлен “уголком”.

    8 этап работы. Домашнее задание.

    Дома решить уравнения высших степеней, используя способ деления многочлена на многочлен “уголком” (раздать листы с заданиями).

    Решение кубических уравнений

    Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

    Решение двучленного кубического уравнения вида A x 3 + B = 0

    Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

    x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

    Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

    Найти корни кубического уравнения 2 x 3 — 3 = 0 .

    Решение

    Необходимо найти х из уравнения. Запишем:

    2 x 3 — 3 = 0 x 3 — 3 2 = 0

    Необходимо применить формулу сокращенного умножения. Тогда получим, что

    x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

    Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

    Ответ: x = 3 3 2 6 .

    Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

    Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

    A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

    Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

    Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

    Решение

    Уравнение является возвратным. Необходимо произвести группировку. Получим, что

    5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

    Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

    5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

    Ответ:

    x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

    Решение кубических уравнений с рациональными корнями

    Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

    Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

    Решение

    3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

    Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

    D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

    Ответ: х = 0 .

    Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

    A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

    Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

    Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

    Решение

    Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

    2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

    Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

    ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

    Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

    1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

    Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

    Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

    x iКоэффициенты многочлена
    2— 11129
    — 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

    2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

    После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

    Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

    Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

    Решение кубических уравнений по формуле Кардано

    Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

    После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

    Полученные p и q в формулу Кардано. Получим, что

    y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

    Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

    Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

    Решение

    Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

    Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

    Отсюда следует, что

    p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

    Производим подстановку в формулу Кордано и получим

    y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

    — 343 216 3 имеет три значения. Рассмотрим их ниже.

    — 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

    Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

    Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

    Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

    Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

    Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

    Преобразуем при помощи формулы Кордано:

    y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

    x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

    Ответ: x 1 = — 1 2 , x 2 , 3 = 3

    При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

    Самостоятельная работа по теме «Решение линейных, квадратных и кубических уравнений» 11 класс

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    «Актуальность создания школьных служб примирения/медиации в образовательных организациях»

    Свидетельство и скидка на обучение каждому участнику

    Линейные, квадратные, кубические уравнения

    Найдите корень уравнения:

    Найдите корень уравнения:

    Найдите корень уравнения

    Решите уравнение

    Решите уравнение

    Найдите корень уравнения

    Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

    Найдите корень уравнения: Если уравнение имеет более одного корня, укажите меньший из них.

    Решите уравнение

    Найдите корень уравнения

    Найдите корень уравнения

    Найдите корень уравнения:

    Найдите корень уравнения: Если уравнение имеет более одного корня, в ответе укажите больший из них.

    Найдите корень уравнения Если уравнение имеет более одного корня, в ответе запишите больший из корней.

    Решите уравнение Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

    Решите уравнение Если уравнение имеет более одного корня, в ответе запишите больший из корней.

    Найдите корень уравнения:

    Найдите корень уравнения:

    Найдите корень уравнения

    Найдите корень уравнения

    Найдите корень уравнения

    Найдите корень уравнения

    Задание 1. Ответы

    Задание 2. Ответы

    Курс повышения квалификации

    Дистанционное обучение как современный формат преподавания

    • Сейчас обучается 956 человек из 80 регионов

    Курс профессиональной переподготовки

    Математика: теория и методика преподавания в образовательной организации

    • Сейчас обучается 685 человек из 75 регионов

    Курс повышения квалификации

    Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

    • Сейчас обучается 314 человек из 70 регионов

    Ищем педагогов в команду «Инфоурок»

    Дистанционные курсы для педагогов

    Самые массовые международные дистанционные

    Школьные Инфоконкурсы 2022

    33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

    Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

    5 572 242 материала в базе

    Другие материалы

    • 08.02.2022
    • 76
    • 0

    • 08.02.2022
    • 91
    • 2

    • 08.02.2022
    • 79
    • 0
    • 08.02.2022
    • 65
    • 1
    • 08.02.2022
    • 111
    • 0
    • 08.02.2022
    • 70
    • 0
    • 08.02.2022
    • 76
    • 0
    • 08.02.2022
    • 141
    • 0

    Вам будут интересны эти курсы:

    Оставьте свой комментарий

    Авторизуйтесь, чтобы задавать вопросы.

    Добавить в избранное

    • 08.02.2022 75
    • DOCX 74.3 кбайт
    • 0 скачиваний
    • Оцените материал:

    Настоящий материал опубликован пользователем Пучкина Галина Петровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Автор материала

    • На сайте: 6 лет
    • Подписчики: 1
    • Всего просмотров: 36746
    • Всего материалов: 62

    Московский институт профессиональной
    переподготовки и повышения
    квалификации педагогов

    Дистанционные курсы
    для педагогов

    663 курса от 690 рублей

    Выбрать курс со скидкой

    Выдаём документы
    установленного образца!

    Учителя о ЕГЭ: секреты успешной подготовки

    Время чтения: 11 минут

    Инфоурок стал резидентом Сколково

    Время чтения: 2 минуты

    В Ленобласти школьники 5-11-х классов вернутся к очному обучению с 21 февраля

    Время чтения: 1 минута

    В школах Хабаровского края введут уроки спортивной борьбы

    Время чтения: 1 минута

    Тринадцатилетняя школьница из Индии разработала приложение против буллинга

    Время чтения: 1 минута

    В России действуют более 3,5 тысячи студенческих отрядов

    Время чтения: 2 минуты

    Рособрнадзор не планирует переносить досрочный период ЕГЭ

    Время чтения: 0 минут

    Подарочные сертификаты

    Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

    Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


    источники:

    http://zaochnik.com/spravochnik/matematika/systems/reshenie-kubicheskih-uravnenij/

    http://infourok.ru/samostoyatelnaya-rabota-po-teme-reshenie-linejnyh-kvadratnyh-i-kubicheskih-uravnenij-11-klass-5759026.html