Курсовая на тему дифференциальные уравнения

Курсовая работа: Решение дифференциальных уравнений. Обзор

Нижегородский государственный технический университет

Кафедра «Общеобразовательные и общепрофессиональные дисциплины»

«Решение дифференциальных уравнений. Обзор»

Выполнила: Аверина Л.А

Группа. ТМв 151001-09

Проверила: Ловыгина М.Б

1 Обзор методов решения в Excel

1.1 Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка

1.3 Метод Эйлера

1.4 Модифицированный метод Эйлера

1.5 Практическая часть

2 Решение дифференциальных уравнений с помощью Mathcad

2.1 Метод Эйлера

2.2 Метод Эйлера с шагом h/2

2.3 Метод Рунге – Кутты

Введение

Уравнение называется обыкновенным дифференциальным n-го порядка, если F определена и непрерывна в некоторой области и, во всяком случае, зависит от . Его решением является любая функция u(x), которая этому уравнению удовлетворяет при всех x в определённом конечном или бесконечном интервале. Дифференциальное уравнение, разрешенное относительно старшей производной имеет вид

Решением этого уравнения на интервале I=[a,b] называется функция u(x).

Решить дифференциальное уравнение у / =f(x,y) численным методом — это значит для заданной последовательности аргументов х0 , х1 …, хn и числа у0 , не определяя функцию у=F(x), найти такие значения у1 , у2 ,…, уn , что уi =F(xi )(i=1,2,…, n) и F(x0 )=y0 .

Таким образом, численные методы позволяют вместо нахождения функции y=F(x) (3) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk -xk -1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Метод Эйлера для обыкновенных дифференциальных уравнений используется для решений многих задач естествознания в качестве математической модели. Например задачи электродинамики системы взаимодействующих тел (в модели материальных точек), задачи химической кинетики, электрических цепей. Ряд важных уравнений в частных производных в случаях, допускающих разделение переменных, приводит к задачам для обыкновенных дифференциальных уравнений – это, как правило, краевые задачи (задачи о собственных колебаниях упругих балок и пластин, определение спектра собственных значений энергии частицы в сферически симметричных полях и многое другое)

1 Обзор методов решения в Excel

1.1 Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка

Идея Рунге-Кута состоит в том, чтобы использовать метод неопределённых коэффициентов. Наиболее употребительным методом Рунге-Кутта решения уравнения первого порядка y’ = F(x,y) (1) является метод четвертого порядка, в котором вычисления производятся по формуле:

yk+1 = yk +(k1 +2k2 +2k3 +k4 )/6, (2)

k1 = Fk h = F(xk , yk )h

Рассмотрим задачу Коши для уравнений первого порядка на отрезке [a,b]:

, (4)

Разобьём промежуток [a,b] на N частей . Обозначим , где u(x) –точное решение задачи Коши, и через значения приближенного решения в точках . Существует 2 типа численных схем :

1. явные: ) (5)

2. неявные: (6)

Здесь F некоторая функция, связывающая приближения. В явных схемах приближенное значение в точке определяется через некоторое число k уже определённых приближенных значений. В неявных схемах определяется не рекурентным способом, как в явных схемах, а для его определения возникает уравнение, поскольку равенство (6) представляет из себя именно уравнение на . Явные схемы проще, однако зачастую неявные схемы предпочтительнее

1.3 Метод Эйлера

Решить дифференциальное уравнение у / =f(x,y) численным методом — это значит для заданной последовательности аргументов х0 , х1 …, хn и числа у0 , не определяя функцию у=F(x), найти такие значения у1 , у2 ,…, уn , что

Таким образом, численные методы позволяют вместо нахождения функции У=F(x) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk -xk -1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Рассмотрим дифференциальное уравнение первого порядка (7) с начальным условием

Требуется найти решение уравнения (7) на отрезке [а,b].

Разобьем отрезок [a, b] на n равных частей и получим последовательность х0 , х1 , х2 ,…, хn , где xi =x0 +ih (i=0,1,…, n), а h=(b-a)/n-шаг интегрирования.

В методе Эйлера приближенные значения у(хi )»yi вычисляются последовательно по формулам уi +hf(xi , yi ) (i=0,1,2…).

При этом искомая интегральная кривая у=у(х), проходящая через точку М00 , у0 ), заменяется ломаной М0 М1 М2 … с вершинами Мi (xi , yi ) (i=0,1,2,…); каждое звено Мi Mi +1 этой ломаной, называемой ломаной Эйлера, имеет направление, совпадающее с направлением той интегральной кривой уравнения (7), которая проходит через точку Мi . Если правая часть уравнения (7) в некотором прямоугольнике R<|x-x0 |£a, |y-y0 |£b>удовлетворяет условиям:

|df/dx|=|df/dx+f(df/dy)| £ M (M=const),

то имеет место следующая оценка погрешности:

где у(хn )-значение точного решения уравнения (7) при х=хn , а уn — приближенное значение, полученное на n-ом шаге.

Формула (13) имеет в основном теоретическое применение. На практике иногда оказывается более удобным двойной просчет: сначала расчет ведется с шагом h, затем шаг дробят и повторный расчет ведется с шагом h/2. Погрешность более точного значения уn * оценивается формулой

Метод Эйлера легко распространяется на системы дифференциальных уравнений и на дифференциальные уравнения высших порядков. Последние должны быть предварительно приведены к системе дифференциальных уравнений первого порядка.

1.4 Модифицированный метод Эйлера

Рассмотрим дифференциальное уравнение (7) y / =f(x,y) с начальным условием y(x0 )=y0 . Разобьем наш участок интегрирования на n равных частей. На малом участ интегральную кривую заменим прямой линией.

Рисунок 1 Метод Эйлера в графическом виде

Получаем точку Мккк ). Через Мк проводим касательную:

Делим отрезок (хкк1 ) пополам

Получаем точку Nk / . В этой точке строим следующую касательную:

Из точки Мк проводим прямую с угловым коэффициентом αк и определяем точку пересечения этой прямой с прямой Хк1 . Получаем точку Мк / . В качестве ук+1 принимаем ординату точки Мк / . Тогда:

(14)-рекурентные формулы метода Эйлера.

Сначала вычисляют вспомогательные значения искомой функции ук+1/2 в точках хк+1/2 , затем находят значение правой части уравнения (11) в средней точке y / k +1/2 =f(xk +1/2 , yk +1/2 ) и определяют ук+1 .

Для оценки погрешности в точке хк проводят вычисления ук с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:

где у(х)-точное решение дифференциального уравнения.

Таким образом, методом Эйлера можно решать уравнения любых порядков. Например, чтобы решить уравнение второго порядка y // =f(y / ,y,x) c начальными условиями y / (x0 )=y / 0 , y(x0 )=y0 , выполняется замена

Тем самым преобразуются начальные условия

Здесь решается уравнение dy/dx = 2x-y+x 2 на интервале [0,2], начальное значение y(0)=0, для оценки точности задано также точное решение в виде функции u(x)=x 2 . Оценка погрешности делается в нормеL1 , как и принято в данном случае

2 Решение дифференциальных уравнений с помощью Mathcad

Mathcad имеет ряд встроенных функций, предназначенных для решения обыкновенных дифференциальных уравнений (ОДУ). При решении ОДУ искомой величиной является функция. При использовании любых методов численного интегрирования необходимо, чтобы были заданы по крайней мере следующие величины:

набор точек в которых нужно найти решение;

само дифференциальное уравнение, записанное в некотором специальном виде, который будет описан ниже.

Один из наиболее эффективных алгоритмов интегрирования ОДУ основан на численном методе Рунге-Кутты четвертого порядка. Функция, реализующая этот метод, имеет вид rkfixed (y,x1 ,x2 , npoints,D)

y-вектор начальных условий размерности n, где n- порядок дифференциального уравнения или число уравнений в системе (если решается система уравнений);

x1 , x2 – граничные точки интервала, на котором ищется решение дифференциального уравнения. Начальные условия ,заданные в векторе y,- это значение решения в точке x1 ;

npoints- число точек (не считая начальной точки), в которых ищется приближенное решение. При помощи этого аргумента определяется число строк (1+npoints) в матрице, возвращаемой функцией rkfixed;

D(x,y) – функция,возвращающая значение в виде вектора n элементов, содержащих первые производные неизвестных функций.

Если задачу об отыскании всех решений дифференциального уравнения удается свести к конечному числу алгебраических операций, операций интегрирования и дифференцирования известных функций, то говорят, что уравнениеинтегрируется в квадратурах. В приложениях крайне редко встречаются уравнения, интегрируемые в квадратурах. Поэтому для исследования дифференциальных уравнений широко используются приближенные, численные методы их решения.

Численное решение на отрезке [a, b] задачи Коши

состоит в построении таблицы приближенных значений

решенияy(x)в узлах сетки

a=x0 , щелкните по соответствующей позиции в панели Matrix или введите с клавиатуры символ («точка с запятой»)

Определим шаг формулы Эйлера — шаг интегрирования

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим по формулам Эйлера значения приближенного решения в узлах сетки

Выведем в рабочий документ вычисленные значения решения

Построим график найденного решения y(x)

Для того чтобы вывести значение переменной в рабочий документ, введите имя переменной, знак равенства и щелкните по рабочему документу вне выделяющей рамки

Для того чтобы построить график приближенного решения, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции возле оси абсцисс обозначение компонент вектора, содержащего значения узлов сетки, а в позиции возле оси ординат — обозначение компонент вектора, содержащего значения приближенного решения в узлах сетки; затем щелкните по свободному месту в рабочем документе вне поля графиков.

Метод Эйлера допускает простуюгеометрическую интерпретацию. Пусть известна точка (xi ,yi ) интегральной кривой уравненияy’=f(x, y).

Касательная к интегральной кривой уравнения, проходящая через эту точку, определяется уравнением

Следовательно, вычисленная методом Эйлера точка (xi+ 1 ,yi+ 1 ),

Найдем методом Эйлера на [0, 1] с шагом h=0.2 и с шагом h=0.1 приближенное решение задачи Коши

y’ = sin x – cosy,y(0)=1.

Изобразим приближенные решения графически.

Расчетные формулы метода Эйлера для решения этой задачи имеют вид

x0=0, y0= 1, xi+1 = xi + 0.2, yi+1 = yi + 0.2(sinxi — cosyi), i =0, 1, . 4

xi+1 = xi + 0.2, yi+1 = yi + 0.2(sinxi — cosyi), i =0, 1, . 9

Определим правую часть уравнения

Знак присваивания можно ввести щелчком по соответствующей позиции в панели Evaluation.

Определим диапазон изменения номера точки i=0,1, . 4 для вычислений с шагом h=0.2

Для того чтобы ввести символ диапазона изменения индекса , щелкните по соответствующей позиции в панели Matrix или введите с клавиатуры символ («точка с запятой»)

При решении задачи с шагом h=0.2 назовем шаг h1, аргумент — x1, а решение — y1.

Определим начальное условие

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим шаг формулы Эйлера — шаг интегрирования

Определим по формулам Эйлера значения приближенного решения в узлах сетки

Выведем в рабочий документ вычисленные значения решения

Для того чтобы вывести значение переменной в рабочий документ, введите имя переменной, знак равенства и щелкните по рабочему документу вне выделяющей рамки

Построим график найденного решения y1(x1)

Для того чтобы построить график приближенного решения, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции возле оси абсцисс обозначение компонент вектора, содержащего значения узлов сетки, а в позиции возле оси ординат — обозначение компонент вектора, содержащего значения приближенного решения в узлах сетки; затем щелкните по свободному месту в рабочем документе вне поля графиков.

Определим диапазон изменения номера точки i=0,1, . 9 для вычислений с шагом h=0.1

Для того чтобы ввести символ диапазона изменения индекса , щелкните по соответствующей позиции в панели Matrix или введите с клавиатуры символ («точка с запятой»)

При решении задачи с шагом h=0.1 назовем шаг h2, аргумент — x2, а решение — y2.

Определим начальное условие

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим шаг формулы Эйлера — шаг интегрирования

Определим по формулам Эйлера значения приближенного решения в узлах сетки

Выведем в рабочий документ вычисленные значения решения. Для сравнения рядом выведены значения решения, вычисленные с большим шагом

Построим график решения y2(x2)

Построим на одном графике оба приближенные решения

Для того чтобы одновременно построить графики нескольких функций от разных аргументов, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции у оси абсцисс имя первого аргумента, запятую, имя второго аргумента, и т.д., разделяя имена аргументов запятой.

Аналогично, в позиции возле оси ординат введите имя функции первого аргумента, запятую, имя функции второго аргумента и т.д.разделяя имена функций запятой.

Когда функции определены, щелкните по рабочему документу вне поля графиков.

Методом Рунге-Кутты четвертого порядкаточности называют одношаговый метод, относящийся к широкому классу методов Рунге-Кутты. В этом методе величиныyi+ 1 вычисляются по следующим формулам:

Найдем на [0, 1]приближенноерешение задачи Кошиy’ = sinx– cosy,y(0)=1методом Рунге-Кутты 4-го порядка с шагом h=0.2 и методом Эйлера с тем же шагом.Изобразим оба приближенные решения графически

Для решения задачиметодом Рунге-Кутты воспользуемся функциейrkfixed

Определим начальное условие — решение в начальной точке

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим правую часть уравнения

Знак присваивания можно ввести щелчком по соответствующей позиции в панели Evaluation.

Вычислим приближенное решение на отрезке [0,1], выполнив n=1/h=5 одинаковых шагов, методом Рунге-Кутты 4-го порядка; обозначим приближенное решение Y

Выведем в рабочий документ вычисленное приближенное решение

Для того чтобы вывести значение переменной в рабочий документ, введите имя переменной, знак равенства и щелкните по рабочему документу вне выделяюшей рамки

В первом столбце приведены значения x, во втором столбце — соответствующие значения приближенного решения

Решим ту же задачу методом Эйлера

Выведем в рабочий документ вычисленное приближенное решение, и, для сравнения, решение, вычисленное методом Рунге-Кутты

Построим графики приближенных решений

Для того чтобы построить график приближенного решения, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции возле оси абсцисс имя первого столбца матрицы Y, содержащего значения x в узлах сетки, а в позиции возле оси ординат — имя второго столбца, содержащего значения приближенного решения в узлах сетки; затем щелкните по свободному месту в рабочем документе вне поля графиков.

Для того чтобы одновременно построитьграфики нескольких функций от разных аргументов, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции у оси абсцисс имя первого аргумента, запятую, имя второго аргумента, и т.д., разделяя имена аргументов запятой.

Аналогично, в позиции возле оси ординат введите имя функции первого аргумента, запятую, имя функции второго аргумента и т.д. разделяя имена функций запятой.

Когда функции определены, щелкните по рабочему документу вне поля графиков.

Для того чтобы ввести номер столбца, щелкните по соответствующему символу в панели Matrix

Для того чтобы изменить стиль изображения, щелкните дважды по полю графиков и установите в окне соответствующие параметры

Миллионы людей занимаются математическими расчетами, иногда в силу влечения к таинствам математики и ее внутренней красоте, а чаще в силу профессиональной или иной необходимости, не говоря уже об учебе. Ни одна серьезная разработка в любой отрасли науки и производства не обходится без трудоемких математических расчетов. Система Mathcadпользуется огромной популярностью во всем мире, позволяя готовить вполне профессиональные документы, имеющие вид статей и книг по математике.

Программа MicrosoftExcel входит в офисный пакет MicrosoftOfficeи предназначена для подготовки и обработки электронных таблиц под управлением операционной системой Windows. MicrosoftExcel – это многофункциональный, мощный редактор электронных таблиц. Он представляет возможность производить различные расчеты, составлять списки, сметы и что немаловажно, строить наглядные графики и диаграммы.

MathCAD – это мощная и в то же время простая универсальная среда для решения задач в различных отраслях науки и техники, финансов и экономики, физики и астрономии, строительства и архитектуры, математики и статистики, организации производства и управления… Она располагает широким набором инструментальных, информационных и графических средств. Сегодня MathCAD – одна из самых популярных математических систем. Она пользуется большим спросом у студентов, инженеров, экономистов, менеджеров, научных работников и всех тех, чья деятельность связана с количественными методами расчета.

Microsoft Excel ‑ средство для работы с электронными таблицами, намного превышающее по своим возможностям существующие редакторы таблиц, первая версия данного продукта была разработана фирмой Microsoft в 1985 году. Microsoft Excel ‑ это простое и удобное средство, позволяющее проанализировать данные и, при необходимости, проинформировать о результате заинтересованную аудиторию, используя Internet. Microsoft ® Excel разработан фирмой Microsoft, и является на сегодняшний день самым популярным табличным редактором в мире. Кроме стандартных возможностей его отличает следующие возможности, он выводит на поверхность центральные функции электронных таблиц и делает их более доступными для всех пользователей. Для облегчения работы пользователя упрощены основные функции, создание формул, форматирование, печать и построение графиков.

Данная курсовая работа позволила мне более близко познакомится с пакетом прикладных программ MathCAD и MicrosoftExcel. Мной было рассмотрено несколько способов решения дифференциальных уравнений.

Всё это позволило в полном объеме усвоить лекционный материал и понять перспективы использования вычислительной техники при решении различных задач практического характера.

1. Индейкин В. В. Табличный редактор Microsoft Excel. Учебное пособие. – Казань, 1999. – 75с.

2. Кудрявцев Е. М. MathCAD 2000 Pro. – М.: ДМК Пресс, 2001. – 571с.

Курсовая работа На тему: «Построение решений дифференциальных уравнений с помощью рядов»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

На тему: «Построение решений дифференциальных уравнений с помощью рядов»

1. Дифференциальные уравнения высших порядков

1.1. Понятие о линейном дифференциальном уравнении n-го порядка

2. Интегрирование дифференциальных уравнений при помощи рядов

2.1. Интегрирование дифференциальных уравнений при помощи степенных рядов.

2.2. Интегрирование дифференциальных уравнений при помощи обобщенных степенных рядов.

3. Частные случаи использования обобщенных степенных рядов при интегрирование дифференциальных уравнений.

3.1. Уравнение Бесселя.

3.2. Гипергеометрическое уравнение или уравнение Гаусса.

4. Применение метода интегрирования обыкновенных дифференциальных уравнений при помощи рядов на практике.

В общем случае нахождение точного решения обыкновенного дифференциального уравнения первого порядка его интегрированием невозможно. Тем более это неосуществимо для системы обыкновенных дифференциальных уравнений. Это обстоятельство привело к созданию большого числа приближенных методов решения обыкновенных дифференциальных уравнений и их систем. Среди приближенных методов можно выделить три группы: аналитические, графические и численные. Разумеется, подобная классификация в известной мере условна. Например, графический метод ломаных Эйлера лежит в основе одного из способов численного решения дифференциального уравнения.

Интегрирование обыкновенных дифференциальных уравнений при помощи степенных рядов является приближенным аналитическим методом, применяемым, как правило, к линейным уравнениям не ниже второго порядка.

Аналитические методы встречаются в курсе дифференциальных уравнений. Для уравнений первого порядка (с разделяющимися переменными, однородных, линейных и др.), а также для некоторых типов уравнений высших порядков (например, линейных с постоянными коэффициентами) удается получить решения в виде формул путем аналитических преобразований.

Целью работы является анализ одного из приближенных аналитических методов, такого как интегрирование обыкновенных дифференциальных уравнений при помощи рядов, и применение их при решении дифференциальных уравнений.

Дифференциальные уравнения высших порядков

Обыкновенным дифференциальным уравнением n-го порядка называется соотношение вида

где F – известная функция своих аргументов, заданная в некоторой области;

x – независимая переменная;

y – функция переменной x, подлежащая определению;

y’, y”, …, y (n) – производные функции y.

При этом предполагается, что y (n) действительно входит в дифференциальное уравнение. Любой же из остальных аргументов функции F может в этом соотношении явно не участвовать.

Всякая функция, удовлетворяющая данному дифференциальному уравнению, называется его решением, или интегралом. Решить дифференциальное уравнение — это значит найти все его решения. Если для искомой функции y удается получить формулу, дающую все решения данного дифференциального уравнения и только их, то говорим, что нашли его общее решение, или общий интеграл.

Общее решение дифференциального уравнения n-го порядка содержит n произвольных постоянных с 1 , с 2 . c n и имеет вид .

1.1. Понятие о линейном дифференциальном уравнении n-го порядка

Дифференциальное уравнение n-го порядка называется линейным, если оно первой степени относительно совокупности величин y, y’, …, y (n) . Таким образом, линейное дифференциальное уравнение n-го порядка имеет вид:

где – известные непрерывные функции от x.

Данное уравнение называется неоднородным линейным уравнением или уравнением с правой частью. Если же правая часть уравнения, , тождественно равна нулю, то линейное уравнение называется однородным дифференциальным линейным уравнением и имеет вид

В случае если n будет равно 2, то получим линейное уравнение II-го порядка, которое запишется как Как и линейное уравнение n-го порядка уравнение второго порядка может быть однородным ( ) и неоднородным.

Интегрирование дифференциальных уравнений при помощи рядов.

Решения обыкновенного дифференциального уравнения выше первого порядка с переменными коэффициентами не всегда выражаются через элементарные функции, и интегрирование такого уравнения редко приводится к квадратурам.

2.1. Интегрирование дифференциальных уравнений при помощи степенных рядов.

Наиболее распространенным приемом интегрирования указанных уравнений является представление искомого решения в виде степенного ряда. Рассмотрим уравнения второго порядка с переменными коэффициентами

Замечание1. Достаточно широкий класс функций можно представить в виде

где , — некоторые постоянные. Это выражение называют степенным рядом. Если его значения равны соответствующим значениям функции для любого x из интервала (х 0 – Т; х 0 + Т), то такой ряд называют сходящимся в этом интервале.

Предположим, что функции a(х), b(х) являются аналитическими функциями уравнения (2.1) на интервале (х 0 – Т; х 0 + Т), Т > 0, т.е. разлагаются в степенные ряды:

Имеет место следующая теорема (опуская доказательство, приведем лишь ее формулировку).

Теорема_1. Если функции a(х), b(х) имеют вид (2.2), то любое решение y(х) обыкновенного дифференциального уравнения (2.1) представимо в виде сходящегося при |x — x 0 |

Эта теорема не только дает возможность представить решение в виде степенного ряда, но и, что самое главное, обосновывает сходимость ряда (2.3).

Алгоритм такого представления состоит в следующем. Для удобства положим в (2.2) и (2.3) x 0 = 0 и будем искать решение обыкновенного дифференциального уравнения (2.1) в виде

Подставив (2.4) в (2.1), получим равенство

Для выполнения (2.5) необходимо, чтобы коэффициент при каждой степени x был равен нулю. Из этого условия получаем бесконечную систему линейных алгебраических уравнений

Из полученной бесконечной системы линейных алгебраических уравнений можно последовательно найти , , …, если задать значения и (в случае задачи Коши для обыкновенного дифференциального уравнения (2.1) можно ввести начальные условия = , = ).

Если функции а(х), b(х) являются рациональными, т.е. , b , где — многочлены, то в окрестностях точек, в которых или , решение в виде степенного ряда может не существовать, а если и существует, то может расходиться всюду, за исключением точки x = 0. Это обстоятельство было известно еще Л. Эйлеру, который рассмотрел уравнение первого порядка

Этому уравнению удовлетворяет степенной ряд

Нетрудно, однако, видеть, что этот ряд расходится при любом . Решение обыкновенного дифференциального уравнения в виде расходящегося степенного ряда называют формальным.

Одним из наиболее ярких и понятных примеров на применение данного способа интегрирования является уравнения Эйри или

Все решения этого уравнения являются целыми функциями от x. Тогда решение уравнения Эйри будем искать в форме степенного ряда (2.4). Тогда равенство (2.5) принимает вид

Приравняем нулю коэффициент при каждой степени x. Имеем

Коэффициент при нулевой степени x равен 2у 2 . Следовательно, у 2 = 0. Тогда из равенства нулю коэффициента находим = . Коэффициент при равен . Отсюда .

Из этой формулы получаем

Коэффициенты и остаются неопределенными. Для нахождения фундаментальной системы решений положим вначале = 1, = 0, а затем наоборот. В первом случае имеем

На основании теоремы_1 эти ряды являются сходящимися всюду на числовой прямой .

Функции и называют функциями Эйри. При больших значениях x асимптотическое поведение этих функций описывают следующие формулы и .

Графики этих функций изображены на рис. 2.1. Получаем, что при неограниченном увеличении x нули всякого решения уравнения Эйри неограниченно сближаются, что видно и из асимптотического представления этих решений, но совсем не очевидно из представления функций Эйри в виде сходящихся степенных рядов. Отсюда следует, что способ поиска решения обыкновенного дифференциального уравнения при помощи ряда, вообще говоря, малопригоден при решении прикладных задач, а само представление решения в виде ряда затрудняет анализ качественных свойств полученного решения.

2.2. Интегрирование дифференциальных уравнений при помощи обобщенных степенных рядов.

Итак, если в уравнении (2.1) функции а(х), b(х) рациональные, то точки, в которых или , называются особыми точками уравнения (2.1).

Для уравнения второго порядка

в котором а(х), b(х) — аналитические функции в промежутке |х – x 0 | 0 или b 0 в разложении функций а(х) и b(х) в степенной ряд отличен от нуля. Это пример простейшей особой точки, так называемой регулярной особой точки (или особой точки первого рода).

В окрестности особой точки х = х 0 решения в виде степенного ряда может не существовать, в этом случае решения надо искать в виде обобщенного степенного ряда:

где λ и , , , …, ( ) подлежат определению.

Теорема_2. Для того чтобы уравнение (2.6) имело в окрестности особой точки х = х 0 хоть одно частное решение в виде обобщенного степенного ряда (2.7), достаточно, чтобы это уравнение имело вид

Суть сходящиеся степенные ряды, причем коэффициенты не равны нулю одновременно, ибо в противном случае точка х = х 0 не особая точка и существует два линейно независимых решения, голоморфных в точке х = х 0 . При этом, если ряды (2.7”), входящие в коэффициенты уравнения (2.7’) сходятся в области | х — х 0 |

Рассмотрим уравнение (2.6) при х > 0. Подставив в это уравнение выражение (2.7) при х 0 = 0, имеем

Приравнивая нулю коэффициенты при степенях х, получаем рекуррентную систему уравнений:

Так как , то λ должно удовлетворять уравнению

которое называется определяющим уравнением. Пусть – корни этого уравнения. Если разность не есть целое число, то ни при каком целом k > 0, а значит, указанным методом можно построить два линейно независимых решения уравнения (2.6):

Если же разность является целым числом, то указанным выше способом можно построить одно решение в виде обобщённого ряда . Зная это решение, с помощью формулы Лиувилля — Остроградского можно найти второе линейно независимое с решение:

Из этой же формулы вытекает, что решение можно искать в виде

(число А может оказаться равным нулю).

Частные случаи использования обобщенных степенных рядов при интегрирование дифференциальных уравнений.

3.1. Уравнение Бесселя.

Уравнению Бесселя является одним из важных в математике и ее приложениях дифференциальным уравнением. Решения уравнения Бесселя, составляющие его фундаментальную систему функций, не являются элементарными функциями. Но они разлагаются в степенные ряды, коэффициенты которых вычисляются довольно просто.

Рассмотрим уравнение Бесселя в общем виде:

К этому уравнению сводятся многие задачи математической физики.

Поскольку уравнение не изменяется при замене в нем x на –x, досточно рассмотреть неотрицательные значения x. Единственная особая точка x=0. Определяющее уравнение, соответствующее x=0, есть , . Если 0, то определяющее уравнение имеет два корня: и . Найдем решение данного уравнения в виде обобщенного степенного ряда

то, подставив у, у’ и у» в исходное уравнение, получим

Отсюда, сокращая на , имеем

Чтобы это равенство выполнялось тождественно, коэффициенты должны удовлетворять уравнениям

Найдем решение, соответствующее корню определяющего уравнения λ = n. Подставив в последние равенства λ = n, видим, что в качестве можно взять любое число, отличное от нуля, число = 0, а для k = 2, 3, . имеем

Отсюда при всех m = 0, 1, 2, … .

Таким образом, найдены все коэффициенты , а значит, решение уравнения (3.1) запишется в виде

называемую гамма-функцией Эйлера. Учитывая, что и что для целых , , а также выберем произвольную постоянную как то запишется в виде

называется функцией Бесселя первого рода n-го порядка.

Второе частное решение уравнения Бесселя, линейно независимое с ищем в виде

Уравнения для определения при имеют вид

По условию n не является целым числом, так что все коэффициенты с четными номерами однозначно выражаются через :

Полагая представим у 2 (х) в виде

называется функцией Бесселя первого рода с отрицательным индексом.

Таким образом, если n не является целым числом, то все решения исходного уравнения Бесселя являются линейными комбинациями функции Бесселя и : .

3.2. Гипергеометрическое уравнение или уравнение Гаусса.

Гипергеометрическим уравнением (или уравнением Гаусса) называется уравнение вида

где α, β, γ — действительные числа.

Точки являются особыми точками уравнения. Обе они регулярные, так как в окрестности этих точек коэффициенты уравнения Гаусса, записанного в нормальной форме

можно представить в виде обобщенного степенного ряда.

Убедимся в этом для точки . Действительно, замечая, что

уравнение (3.2) можно записать в виде

Это уравнение является частным случаем уравнения

причем здесь , так что точка х=0 есть регулярная особая точка уравнения Гаусса.

Построим фундаментальную систему решений уравнения Гаусса в окрестности особой точки х=0.

Определяющее уравнение, соответствующее точке х=0, имеет вид

Его корни , причем их разность не является целым числом.

Поэтому в окрестностях особой точки х=0 можно построить фундаментальную систему решений в виде обобщенных степенных рядов

первый из которых соответствует нулевому корню определяющего уравнения и является обычным степенным рядом, так что решение голоморфно в окрестности особой точки х=0. Второе решение заведомо неголоморфно в точке х=0. Построим сначала частное решение, соответствующее нулевому корню определяющего уравнения.

Итак, будем искать частное решение уравнения (3.2) в виде

Подставим (3.3) в (3.2), получим

Приравнивая к нулю свободный член, получаем .

Пусть , тогда получаем .

Приравнивая нулю коэффициент при , найдем:

Следовательно, искомое частное решение имеет вид:

Ряд справа называется гипергеометрическим рядом, так как при α=1, β=γ он превращается в геометрическую прогрессию

Согласно теореме_2 ряд (3.4) сходится при |x|

Второе частное решение имеет вид:

Вместо того, чтобы находить методом неопределенных коэффициентов, сделаем в уравнении Гаусса замену искомой функции по формуле

Получим уравнение Гаусса

в котором роль параметров α, β и γ играют и .

Поэтому, построив частное решение этого уравнения, соответствующее нулевому корню определяющего уравнения и подставив его в (3.6), получим второе частное решение данного уравнения Гаусса в виде:

Общим решением уравнения Гаусса (3.2) будет:

Пользуясь построенной фундаментальной системой решений уравнения Гаусса в окрестности особой точки х=0, можно легко построить фундаментальную систему решений этого уравнения и в окрестности особой точки х=1, которая тоже является регулярной особой точкой.

С этой целью переведем интересующую нас особую точку х = 1 в точку t = 0 и вместе с ней особую точку x = 0 в точку t = 1 при помощи линейной замены независимой переменной x = 1 – t.

Выполняя эту подстановку в данном уравнении Гаусса, получим

Это — уравнение Гаусса с параметрами . Оно имеет в окрестности |t|

Возвращаясь к переменной х, т. е. полагая t = 1 – х, получим фундаментальную систему решений исходного уравнения Гаусса в окрестности точки | х – 1|

Общим решением уравнения Гаусса (3.2) в области будет

Применение метода интегрирования обыкновенных дифференциальных уравнений при помощи рядов на практике.

Пример_1. (№691) Вычислить несколько первых коэффициентов ряда (до коэффициента при х 4 включительно) с начальными условиями

Решение: Решение уравнения будем искать в виде

Подставляем полученные выражения в исходное уравнение:

Представляя правую часть в виде степенного ряда и приравнивая коэффициенты при одинаковых степенях х в обеих частях уравнения, получаем:

Так как по условию необходимо вычислить коэффициенты ряда до коэффициента при х 4 включительно, то достаточно вычислить коэффициенты .

Из начальных условий следует, что Теперь найдем остальные коэффициенты:

Следовательно, решение уравнения запишется в виде

Пример_2. (№696) Вычислить несколько первых коэффициентов ряда (до коэффициента при х 4 включительно) с начальными условиями

Решение: Решение уравнения будем искать в виде

Подставляем полученные выражения в исходное уравнение:

Представляя правую часть в виде степенного ряда и приравнивая коэффициенты при одинаковых степенях х в обеих частях уравнения, получаем:

Так как по условию необходимо вычислить коэффициенты ряда до коэффициента при х 4 включительно, то достаточно вычислить коэффициенты .

Из начальных условий следует, что и 2. Теперь найдем остальные коэффициенты:

Следовательно, решение уравнения запишется в виде

Пример_3. (№700) Найти линейно независимые решения в виде степенных рядов уравнения . По возможности сумму полученного ряда выразить с помощью элементарных функций.

Решение. Решение уравнения будем искать в виде ряда

Дважды продифференцировав этот ряд и подставив в данное уравнение, имеем

Выпишем несколько первых членов рядов в полученном уравнении:

Приравняв нулю коэффициенты при одинаковых степенях х, получим систему уравнений для определения :

Из этих уравнений находим

Положим , тогда отличными от нуля будут только коэффициенты . Получаем, что

Построено одно решение уравнения

Второе решение, линейно независимое с найденным, получим, предположив . Тогда отличными от нуля будут только коэффициенты :

Ряды, представляющие и , сходятся при любых значениях х и являются аналитическими функциями. Таким образом, все решения исходного уравнения — аналитические функции при всех значениях х. Все решения выражаются формулой , где С 1 , С 2 — произвольные постоянные:

Так как сумму полученного ряда легко выразить с помощью элементарных функций, то и запишется как:

Пример_4. (№711) Решить уравнение 2х 2 у» + (3х – 2х 2 )у’ – (х + 1)у = 0.

Решение. Точка х = 0 является регулярной особой точкой данного уравнения. Составляем определяющее уравнение: Его корни λ 1 = 1/2 и λ 2 = — 1. Решение исходного уравнения, соответствующее корню λ = λ 1 ищем в виде

Подставив , , и в исходное уравнение, имеем

Отсюда, сократив на , получим

Приравняв коэффициенты при одинаковых степенях х, имеем уравнения для определения :

Положив y 0 = 1, находим

Соответствующее корню λ = λ 2 решение исходного уравнения ищем в виде

Подставив это выражение в исходное уравнение и приравняв коэффициенты при одинаковых степенях х, получим или Положив y 0 = 1, находим

Общее решение исходного уравнения запишем в виде , где и — произвольные постоянные.

Решение уравнения, содержащие неизвестные функции и их производные в степени выше первой или каким-либо более сложным образом, зачастую очень сложно.

В последние годы такие дифференциальные уравнения привлекают все большее внимание. Так как решения уравнений зачастую очень сложны и их трудно представить простыми формулами, значительная часть современной теории посвящена качественному анализу их поведения, т.е. разработке методов, позволяющих, не решая уравнения, сказать нечто существенное о характере решений в целом: например, что все они ограниченны, или имеют периодический характер, или определенным образом зависят от коэффициентов.

В ходе выполнения курсовой работы был проведен анализ метода интегрирования дифференциальных уравнений с помощью степенных и обобщенных степенных рядов.

Матвеев Н.В. Методы интегрирования обыкновенных дифференциальных уравнений. Изд. 4-е, испр. и доп. Минск, “Вышэйш. школа”, 1974. – 768с. с ил.

Агафонов С.А., Герман А.Д., Муратова Т.В. Дифференциальные уравнения: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. — 3-е изд, стереотип. -М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. — 352 с.

Бугров Я. С., Никольский С. М. Высшая математика. Т.3: Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного: Учеб. для вузов: В 3 т. / Я. С. Бугров, С. М. Никольский; Под ред. В. А. Садовничего. — 6-е изд., стереотип. — М.: Дрофа, 2004. —— 512с.: ил.

Самолейнко А. М., Кривошея С. А., Перестюк Н. А. Дифференциальные уравнения: примеры и задачи. Учеб. пособие. – 2-е изд., перераб. – М.: Высш. шк., 1989. – 383 с.: ил.

Филиппов А. Ф. Сборник задач по дифференциальным уравнениям. Учеб. пособие для вузов. – М.: Физматизд, 1961. – 100 с.: ил.

Курсовая на тему дифференциальные уравнения

Дифференциальные уравнения как математические модели реальных процессов

Понятия, созданные современной математикой, часто кажутся весьма далекими от реального мира. Но именно с их помощью людям удалось проникнуть в тайны строения атомного ядра, рассчитать движение космических кораблей, создать весь тот мир техники, на котором основано современное производство. Одним из основных методов познания природы является опыт, эксперимент. С помощью экспериментов были установлены многие законы природы (закон сохранения вещества и энергии, периодическая система элементов Д.И. Менделеева и т.д.). Однако не всегда целесообразно проводить эксперимент. За последнее столетие в самых различных областях науки и техники все большую роль стал играть метод математического моделирования.

Чтобы изучить какое-нибудь явление природы или работу машины, предварительно изучают всевозможные связи между величинами, их характеризующими. Затем полученные связи выражают математически и приходят к системе уравнений. Решая эти уравнения или системы уравнений, ученые и инженеры делают выводы о том, как в дальнейшем будет развиваться это явление или как будет работать машина, что надо сделать, чтобы получить требуемые результаты.

При этом уравнения и системы уравнений бывают алгебраическими и дифференциальными. Чтобы получить уравнения, допускающие решения, приходиться упрощать задачу, отбрасывая некоторые величины как несущественные. Но чем точнее нужен результат, тем больше величин приходиться учитывать, тем сложнее получается математическая модель.

Математические модели, которые строили в XIX веке, были сравнительно простыми. Но возрастающие требования к точности ответа, развитие техники, познание разнообразных явлений привели к построению все более сложных математических моделей.

Целью данной курсовой работы является изучение математических моделей, построенных на основе различных процессов, таких как модель рекламной компании — это модель экономического процесса и моделей физических процессов: истечение жидкости из сосудов (водяные часы), кривая погони, невесомость и прогиб балок.

Все эти модели построены помощью теории дифференциальных уравнений. Это говорит о том, что дифференциальные уравнения выступают как мощное средство моделирования. Развитие теории дифференциальных уравнений позволяло и позволяет двигаться научному прогрессу вперед, а использование в процессе моделирования ЭВМ делает модели еще более сложными, полными и гибкими.

1. Теоретические основы математического моделирования

.1 Определения математических моделей

математический дифференциальный уравнение

Никакое определение не может в полном объёме охватить реально существующую деятельность по математическому моделированию. Несмотря на это, определения полезны тем, что в них делается попытка выделить наиболее существенные черты.

Определение модели по А.А. Ляпунову: Моделирование — это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система (модель):

1) находящаяся в некотором объективном соответствии с познаваемым объектом;

2) способная замещать его в определенных отношениях;

3) дающая при её исследовании, в конечном счете, информацию о самом моделируемом объекте.

По учебнику Советова и Яковлева: «модель — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала». «Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием». «Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи».

По Самарскому и Михайлову, математическая модель — это «эквивалент» объекта, отражающий в математической форме важнейшие его свойства — законы, которым он подчиняется, связи, присущие составляющим его частям, и т.д.» Существует в триадах «модель-алгоритм-программа». «Создав триаду модель-алгоритм-программа», исследователь получает в руки универсальный, гибкий и недорогой инструмент, который вначале отлаживается, тестируется в пробных вычислительных экспериментах. После того, как адекватность (достаточное соответствие) триады исходному объекту установлена, с моделью проводятся разнообразные и подробные опыты», дающие все требуемые качественные и количественные свойства и характеристики объекта».

.2 Классификация математических моделей

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

  • дескриптивные (описательные) модели;
  • оптимизационные модели;
  • многокритериальные модели;
  • игровые модели.

Поясним это на примерах:

Дескриптивные (описательные) модели. Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью, подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели. Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть, весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики — теория игр, — изучающий методы принятия решений в условиях неполной информации.

2. Примеры использования дифференциальных уравнений при моделировании реальных процессов

.1 Модель рекламной компании

Фирма начинает рекламировать новый товар или услугу. Разумеется, что прибыль от будущих продаж должна с лихвой покрывать издержки на дорогостоящую кампанию. Ясно, что вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, уже возможно рассчитывать на заметную прибыль, и, наконец, наступит момент, когда рынок насытится, и рекламировать товар, далее станет бессмысленно.

Модель рекламной кампании основывается на следующих основных предположениях. Считается, что величина скорость изменения временем числа потребителей, узнавших о товаре и готовых купить его (t — время, прошедшее с начала рекламной кампании, N(t) — число уже информированных клиентов), — пропорциональна числу покупателей, еще не знающих о нем, т.е. величине a1(t) (N0N(t)), где N0 — общее число потенциальных платежеспособных покупателей, а1(t)>0 характеризует интенсивность рекламной кампании (фактически определяемую затратами на рекламу в данный момент времени). Предполагается также, что узнавшие о товаре потребители тем или иным образом распространяют полученную информацию среди неосведомленных, выступая как бы дополнительными рекламными «агентами» фирмы. Их вклад равен величине a2 (t) N(t) (N0-N (t)) и тем больше, чем больше число агентов. Величина а2(t) > 0 характеризует степень общения покупателей между собой (она может быть установлена, например, с помощью опросов).

В итоге получаем уравнение

При a1(t) >> a2N(t) из (1) получается модель типа модели Мальтуса при противоположном неравенстве — уравнение логистической кривой

Рассмотрим модель в окрестности точки N (t = 0) = N(0) = 0; t=0 — (момент начала компании), считая, что N . Из (2) относительно легко вывести соотношение между рекламными издержками и прибылью в самом начале кампании. Обозначим через Р величину прибыли от единичной продажи, какой бы она была без затрат на рекламу. Считаем для простоты, что каждый покупатель приобретает лишь одну единицу товара. Коэффициент а1(t) по своему смыслу — число равнозначных рекламных действий в единицу времени, например, расклейка одинаковых афиш. Через S обозначим стоимость элементарного акта рекламы. Тогда суммарная прибыль есть

а произведенные затраты

И в силу независимости a1 от времени

Итак, мы получили простейшие линейные зависимости прибыли от времени.

Разумеется, данные зависимости не отражают реальную картину, возникающую в ходе рекламной компании. Делаем вывод, что в случае краткосрочной модели, при которой покупатели не успевают передать информацию о продукте, и при небольших по сравнению с оборотом фирмы зарплатах на рекламу, прибыль растет линейно.

.2 Истечение жидкости из сосудов. Водяные часы

Рассмотрим сосуд (рис. 1), площадь горизонтального сечения, которого является произвольной функцией расстояния сечения от дна сосуда.

Пусть высота уровня жидкости в сосуде в начальный момент времени t=0 равна h метров. Пусть, далее, площадь сечения на высоте х равна S(x) , а площадь отверстия на дне сосуда есть S .

Известно, что скорость истечения жидкости U в тот момент, когда высота ее уровня равна x, определяется равенством U=k, где g=9,8 м/с2, k — коэффициент скорости истечения жидкости из отверстия. На бесконечно малом промежутке времени dt истечение жидкости можно считать равномерным, а потому за время dt вытечет столбик жидкости, высота которого Udt и площадь сечения S, что в свою очередь вызовет понижение уровня жидкости в сосуде на — dх.

В результате этих рассуждений приходим к дифференциальному уравнению

которое можно переписать в виде

Решим теперь следующую задачу. Цилиндрический резервуар с вертикальной осью высотой 6 м и диаметром 4 м имеет на дне круглое отверстие радиусом 1/12 м. Требуется установить зависимость уровня воды в резервуаре от времени t, а также определить время, в течение которого вытечет вся вода.

По условиям задачи S(x)=4р; S=1/144. Так как для воды k=0,6, то уравнение (6) примет вид dt = —dx;

Интегрируя это дифференциальное уравнение, приходим к соотношению t= 434,304 ;которое и дает искомую зависимость уровня воды от времени t. Если теперь в последнем равенстве положить х=6, то получим, что вся вода вытечет из резервуара приблизительно через 18 минут.

Вторая задача состоит в следующем. Известно, что древние водяные часы представляли собой чашу (рис. 2), из которой через небольшое отверстие на дне вытекала вода. Такие часы использовались в греческих и римских судах для хронометрирования речей адвокатов, чтобы не допускать слишком долгих выступлений. Требуется найти форму водяных часов, при которой уровень воды убывал бы в чаше с постоянной скоростью.

Задача легко решается с помощью выведенного выше уравнения (6), которое мы только перепишем в виде

Именно, учитывая, что чашу можно рассматривать как поверхность вращения, в соответствии с обозначениями на (рис. 2) из уравнения (7) получаем, что

Где a=Ux= проекция свободной поверхности жидкости на ось x, которая по условию задачи есть величина постоянная. Возведя обе части уравнения (8) в квадрат приходим к уравнению

где c=a2р2/(2gk2s2). Последнее означает, что форма поверхности водяных часов получается вращением кривой (9) вокруг оси х.

2.3 Кривая погони

Приведем один из примеров использования дифференциальных уравнений для выбора правильной стратегии при решении задач поиска.

Пусть, например, миноносец охотится за подводной лодкой в густом тумане. В какой-то момент времени туман поднимается и подводная лодка оказывается обнаруженной на поверхности воды на расстоянии 3 миль от миноносца. Скорость миноносца вдвое больше скорости подводной лодки. Требуется определить траекторию (кривую погони), по которой должен следовать миноносец, чтобы он прошел точно над подводной лодкой, если последняя сразу же погрузилась после ее обнаружения и ушла на полной скорости прямым курсом в неизвестном направлении.

Для решения сформулированной задачи введем полярные координаты r, ? таким образом, чтобы полюс О находился в точке обнаружения подводной лодки, а полярная ось r проходила через точку, в которой в момент обнаружения подводной лодки был миноносец (рис. 3). Дальнейшие рассуждения основаны на следующих соображениях. Прежде всего, миноносцу надо занять такую позицию, чтобы он и подводная лодка находились на одном расстоянии от полюса О. Затем миноносец должен двигаться вокруг полюса О по такой траектории, чтобы оба движущихся объекта все время находились на одинаковом расстоянии от точки О. Только в этом случае миноносец, обходя вокруг полюса О, пройдет над подводной лодкой. Из вышесказанного следует, что сначала миноносец должен идти прямым курсом к точке О до тех пор, пока он не окажется на том же расстоянии х от полюса О, что и подводная лодка.

Очевидно, что расстояние х можно найти либо из уравнения

либо из уравнения

где u — скорость подводной лодки, а 2u — скорость миноносца. Решая последние уравнения, находим, что либо расстояние х равно одной, либо трем милям.

Теперь, если «встречи» не произошло, то миноносец должен в дальнейшем двигаться вокруг полюса О (по направлению движения часовой стрелки или против), удаляясь от последнего со скоростью подводной лодки u. Разложим скорость миноносца 2u на две составляющие: радиальную ur и тангенциальную ut (рис. 3).

Радиальная составляющая — это скорость, с которой миноносец удаляется от полюса О, т.е.

Тангенциальная составляющая — это линейная скорость вращения миноносца относительно полюса. Она, как известно, равна произведению угловой скорости на радиус r, т.е.

Итак решение исходной задачи сводится к решению системы двух дифференциальных уравнений

Которая, в свою очередь, может быть сведена к одному уравнению

исключением переменной t.

Решая последнее дифференциальное уравнение, получаем, что

где С — произвольная постоянная.

Учитывая теперь, что миноносец начинает движение вокруг полюса О с полярной оси r на расстоянии х миль от точки О, т.е. учитывая, что r=1 при ?=0 и r=3 при ?=-р я, приходим к выводу, что в первом случае C=1, а во втором С = З. Таким образом, чтобы выполнить свою задачу, миноносец должен пройти две или шесть миль прямым курсом по направлению к месту обнаружения подводной лодки, а затем двигаться либо по спирали r= либо по спирали r=3.

Состояние невесомости может быть достигнуто различными способами, хотя оно (вольно или невольно) и ассоциируется с «плаванием» космонавтов в кабине космического корабля.

Рассмотрим следующую задачу. Пусть человек весом Р находится в кабине пассажирского лифта, движущегося вниз с ускорением а= бg, где 0 -ускорение силы тяжести. Требуется определить давление человека на дно кабины, а также ускорение лифта, при котором это давление отсутствует.

На человека в лифте действуют две силы (рис. 4): вес человека Р и сила реакции дна кабины лифта Q (равная давлению человека на дно кабины). Дифференциальное уравнение движения человека запишется в виде

Так как =а=ag, m=P/g то из уравнения (10) получаем соотношение

Принимая, далее, во внимание, что 0 (рис. 6) постоянного поперечного сечения, сделанную из однородного материала. Ось симметрии балки указана на (рис. 6) пунктирной линией. Предположим, что под влиянием сил, которые действуют на балку в вертикальной плоскости, содержащей ось симметрии, балка прогибается (рис. 7).

Действующие силы могут быть обусловлены весом балки, внешне приложенной нагрузкой или как той, так и другой силами вместе. Понятно, что под действием сил ось симметрии будет искривляться. Обычно искривленную ось симметрии называют упругой линией. Определение формы этой линии играет важную роль в теории упругости.

Отметим, что существуют различные типы балок в зависимости от способов их крепления или опоры. Например, на (рис. 8) изображена балка, у которой конец А жестко закреплен, а конец В свободен. Такая балка называется консольной балкой. На (рис. 9) показана балка, лежащая свободно на опорах А и В. Еще один тип балок с опорами показан па (рис. 10). Существуют и различные способы приложения внешних нагрузок. Например, на (рис. 8) показана равномерно распределенная нагрузка. Конечно, нагрузка может быть и переменной вдоль всей длины балки или некоторой ее части (рис. 9). На (рис. 10) указан случай сосредоточенной нагрузки.

Рассмотрим горизонтальную балку ОА (рис. 11). Пусть ее ось симметрии (показанная на рисунке пунктиром) лежит на оси х, где за положительное направление выбирается направление вправо от точки О, являющейся началом координат. За положительное направление на оси у выберем направление вниз от точки О. Под действием внешних сил F1 , F2 ,… (и веса балки, если он большой) ось симметрии искривляется в упругую линию, которая показана на (рис. 12) пунктиром. Смещение y упругой линии от оси х называется прогибом балки в положении х . Таким образом, если известно уравнение упругой линии, то всегда можно указать и прогиб балки. Ниже мы покажем, как это может быть сделано практически.

Обозначим через М(х) изгибающий момент в вертикальном поперечном сечении балки с координатой х . Изгибающий момент определяется как алгебраическая сумма моментов тех сил, которые действуют с одной стороны балки в положении х. При подсчете моментов будем считать, что силы, которые действуют на балку снизу вверх, дают отрицательные моменты, а силы, действующие сверху вниз, дают положительные моменты.

В сопротивлении материалов доказывается, что изгибающий момент в положении х связан с радиусом кривизны упругой линии соотношением

где Е — модуль упругости Юнга, который зависит от материала, J — момент инерции поперечного сечения балки в положении х относительно горизонтальной прямой, проходящей через центр тяжести этого поперечного сечения. Произведение EJ обычно называют жесткостью при изгибе, ее величину в дальнейшем будем считать постоянной. Теперь, если предположить, что балка лишь слегка прогибается, что часто бывает на практике, то угловой коэффициент у’ упругой линии будет очень мал, и поэтому вместо уравнения (13) можно рассматривать приближенное уравнение

Чтобы показать, как на практике используется уравнение (14), рассмотрим следующую задачу. Горизонтальная однородная стальная балка длины , свободно лежащая на двух опорах, прогибается под действием собственного веса, равного р кгc на единицу длины. Требуется найти уравнение упругой линии и максимальный прогиб балки. На (рис. 13) упругая линия показана пунктиром. Поскольку балка является двухопорной, то каждая из опор создает направленную вверх реакцию, равную половине веса балки (равную р/2). Изгибающий момент М(х) есть алгебраическая сумма моментов этих сил, действующих на балку с одной стороны от точки Q (рис. 13). Рассмотрим сначала действие сил слева от точки Q. На расстоянии х от точки Q сила р/2 действует на балку снизу вверх и создает отрицательный момент. Сила же рх, которая действует на балку сверху вниз на расстоянии х/2 от точки Q, создает положительный момент.

Таким образом, суммарный изгибающий момент в точке Q задается формулой

Если же рассмотреть действие сил справа от точки Q, то в этом случае на расстоянии ()/2 от точки Q на балку действует сверху вниз сила р(-x), которая создает положительный момент. Отрицательный же момент создает сила р/2, которая действует на балку снизу вверх на расстоянии —x от точки Q. Суммарный изгибающий момент подсчитывается в данном случае по формуле

Как показывают формулы (15) и (16), изгибающие моменты в обоих случаях оказываются равными. Теперь, зная, как находится изгибающий момент, легко выписать и основное уравнение (14), которое в нашем случае принимает вид

Учитывая же, что на концах О и А балка не прогибается, для нахождения у из уравнения (17) воспользуемся условиями на концах балки:

А тогда интегрирование уравнения (17) с учетом последних условий дает

Уравнение (18) является уравнением упругой линии. Формула (18) используется на практике для определения максимального прогиба. Так, в нашем конкретном случае, основываясь на соображениях симметрии (это можно сделать и прямыми вычислениями), находим, что максимальный прогиб будет при х=/2 и равен он 5p4/(384EJ) где

Широкое применение дифференциальных уравнений достаточно актуально в современном научном мире. Практически любой процесс может быть описан с помощью дифференциального уравнения.

В данной курсовой работе были рассмотрены пять математических моделей, построенных на основе различных процессов, модель рекламной компании, процесс истечения жидкости из сосудов (водяные часы), кривая погони, невесомость и прогиб балок. Эти модели построены помощью теории дифференциальных уравнений. Задачи, поставленные в курсовой работе, считаем решенными, цель достигнута.

Список используемой литературы

  1. Самарский А.А., Михайлов А.П. Математическое моделирование: Идеи. Методы. Примеры. — 2-е изд., испр. — М.: Физматлит, 2001.
  2. Агафонов С.А., Герман А.Д., Муратова Т.В. Дифференциальные уравнения.
  3. Введение в математическое моделирование Издательства: Университетская книга, Логос, 2007 г.
  4. Амелькин В.В. Дифференциальные уравнения в приложениях. Москва «Наука». Главное издательство физико-математической литературы 1987 г.
  5. Е. Пикуль Математические модели физических процессов Газета «Физика» №12 за 2009 год.

6. Владимиров В.С. «Уравнения математической физики», М., «Наука», 1988 г.

7. И. М Уваренков, М.З. Малер «Курс математического анализа», М., «Просвещение», 1976.

Теги: Дифференциальные уравнения как математические модели реальных процессов Курсовая работа (теория) Математика


источники:

http://infourok.ru/kursovaya-rabota-na-temu-postroenie-reshenij-differencialnyh-uravnenij-s-pomoshyu-ryadov-4129251.html

http://dodiplom.ru/ready/129104

Название: Решение дифференциальных уравнений. Обзор
Раздел: Рефераты по информатике, программированию
Тип: курсовая работа Добавлен 01:47:37 18 января 2011 Похожие работы
Просмотров: 4852 Комментариев: 21 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать