Курсовая работа на тему линейные уравнения

Курсовая работа по теме,, Линейные уравнения с параметром»

В работе приводится пример введения параметра на уроке в 8 классе. Урок разработан полностью .

Скачать:

ВложениеРазмер
kursovaya_rabota1_lineynym_uravneniyam_s_parametrom.docx127.3 КБ

Предварительный просмотр:

Государственное образовательное учреждение

дополнительного профессионального образования (повышения квалификации)

специалистов Московской области

Педагогическая Академия Последипломного Образования

Кафедра математических дисциплин

Методика решения задач с параметрами

«Линейные уравнения с параметром»

МБОУ Любучанская СОШ Чеховского района Московской области

Никулина Валентина Александровна

  1. Введение
  2. Место и цели задач с параметрами в школьном курсе математики.
  3. Линейное уравнение с параметром . Урок введения понятия параметра.
  4. Темы факультативных занятий в 8 классе.
  5. Материал к урокам
  6. Заключение
  7. Список литературы

В соответствии с распоряжением Правительства Российской Федерации от 29 декабря 2001 г. №1756-р об одобрении Концепции модернизации российского образования на период до 2010 г. на старшей ступени общеобразовательного школы предусматривается профильное обучение , ставится задача создания “ системы специализированной подготовки (профильного обучения) в старших классах общеобразовательной школы, ориентированной на индивидуализацию обучения и социализацию обучающихся, в том числе с учетом реальных потребностей рынка труда отработки гибкой системы профилей и кооперации старшей ступени школы с учреждениями начального, среднего и высшего профессионального образования ”.

Профильное обучение – средство дифференциации и индивидуализации обучения, позволяющее за счет изменений в структуре, содержании и организации образовательного процесса более полно учитываются интересы, склонности и способности учащихся, создавать условия для обучения старшеклассников в соответствии с их профессиональными интересами и намерениями в отношении продолжения образования. Профильная школа есть институциональная форма реализации этой цели. Это основная форма, однако перспективными в отдельных случаях могут стать иные формы организации профильного обучения, в том числе, выводящие реализацию соответствующих образовательных стандартов и программ за стены отдельного общеобразовательного учреждения.

Профильное обучение направлено на реализацию личностно-ориентированного учебного процесса. При этом существенно расширяются возможности выстраивания учеником индивидуальной образовательной траектории.

Элективные курсы – обязательные для посещения курсы по выбору учащихся, входящие в состав профиля обучения на старшей ступени школы. Элективные курсы реализуются за счет школьного компонента учебного плана и выполняют две функции. Одни из них могут «поддерживать» изучение основных профильных предметов на заданном профильным стандартом уровне. Например, элективный курс «Математическая статистика» поддерживает изучение профильного предмета экономики. Другие элективные курсы служат для внутрипрофильной специализации обучения и для построения индивидуальных образовательных траекторий. Например, курсы «Информационный бизнес», «Основы менеджмента» и др. в социально-гуманитарном профиле; курсы «Химические технологии», «Экология» и др. в естественнонаучном профиле. Количество элективных курсов, предлагаемых в составе профиля, должно быть избыточно по сравнению с числом курсов, которые обязан выбрать учащийся. По элективным курсам единый государственный экзамен не проводится.

К 15-16 годам у большинства учащихся складывается ориентация на сферу будущей профессиональной деятельности. Так, по данным социологических опросов, проведенных в 2002 году Центром социологических исследований Минобразования России, “профессиональное самоопределение тех, кто в дальнейшем намерен учиться в ПТУ или техникуме (колледже), начинается уже в 8-м классе и достигает своего пика в 9-м, а профессиональное самоопределение тех, кто намерен продолжить учебу в вузе, в основном складывается в 9-м классе”. При этом примерно 70-75% учащихся в конце 9-го класса уже определились в выборе возможной сферы профессиональной деятельности

Место и цели задач с параметрами в школьном курсе математики

Всё возрастающая популярность задач с параметрами далеко не случайна. Теоретическое изучение и математическое моделирование многообразных процессов из различных областей науки и практической деятельности человека часто приводят к достаточно сложным уравнениям и неравенствам или их системам содержащим параметры. Задачи с параметрами, предлагающиеся на конкурсных экзаменах, являются прообразом важных научно-исследовательских задач, которые предстоит решать будущему поколению. Такие задачи требуют глубокого понимания сути процесса, свободного владения различными математическими методами и скрупулёзного анализа.

Все рассмотренные задания в данной работе имеют цель – помочь учащимся составить представление о параметре, о том, что значит решить уравнение с ним. В самом начале знакомства с параметрами у учеников возникает психологический барьер, который обусловлен его противоречивыми характеристиками. С одной стороны, параметр в уравнении следует считать величиной известной, а с другой, конкретное значение параметра не дано. С одной стороны, параметр является величиной постоянной, а с другой может принимать различные значения. Получается, что параметр в уравнении – это «неизвестная величина», «переменная постоянная». Эти противоречивые высказывания точно отражают суть тех сложностей, которые нужно преодолеть ученикам.

В последнее время в материалах ЕГЭ и ГИА, предлагаются задания по теме: ,,Уравнения, содержащие параметр”. Некоторые учащиеся боятся даже браться за эти задачи, думая, что у них все равно не получиться. Стоит отметить, что навыки в решении уравнений и неравенств с параметром необходимы ученикам, желающим подготовиться для успешной сдачи централизованного тестирования и ЕГЭ, а также будет хорошим подспорьем для успешных выступлений на математических олимпиадах. Задачи такого типа вызывают затруднения у учащихся, так как практических заданий по данной теме в школьных учебниках мало.

Задачи с параметрами – эффективное упражнение для развития интеллекта, математического и логического мышления, умения анализировать, сравнивать, обобщать, способствуют формированию математической культуры. Каждое из заданий с параметрами представляет для учащихся небольшую исследовательскую работу, справившись с которой, ученик поднимается на одну ступеньку выше в своем понимании методов решения математических задач. Учащиеся, владеющие методами решения задач с параметрами, успешно справляются с другими задачами.

При решении задач с параметрами приходится все время производить несложные, но последовательные рассуждения, составлять для себя логическую схему решаемой задачи. Поэтому такие задачи – незаменимое средство для тренировки логического мышления. Их решение позволяет намного лучше понять обычные, без параметров, задачи. А привычка к математическим рассуждениям очень полезна при изучении высшей математики и использовании полученных знаний впоследствии.

Программа по математике средней общеобразовательной школы не уделяет большого внимания решению задач с параметрами. Следовательно, каждый учитель должен сам найти время на уроке или на факультативных занятиях для решения таких задач. Эти задачи представляют чисто математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков

Частичное решение проблемы (малочисленность задач с параметрами в школьном курсе математики) я вижу во введении факультативных занятий и элективных курсов по предпрофильной подготовке учащихся ,начиная с 8 класса, которые предусматривают формирование устойчивого интереса к предмету, выявление и развитие математических способностей, ориентацию на профессии, связанные существенным образом с математикой.

В школьном курсе математики одной из важных тем является тема «Линейные уравнения». Это первые уравнения с которыми учащиеся знакомятся в школьном курсе математики, начиная с первого класса , где решение уравнения сводится к нахождению неизвестного слагаемого, неизвестного уменьшаемого, вычитаемого, неизвестного множителя, делимого, делителя. Вводить уравнения с параметром нужно, начиная с линейных.

Урок введения понятия параметр. Линейное уравнение с параметром .

Тема занятия . Параметр. Линейное уравнение с параметром”

Задача занятия : ввести понятие параметра. Дать первые навыки решения линейных уравнений с параметром.

-Дайте определение линейного уравнения

-Что называется корнем уравнения?

-Что значит решить уравнение?

Введение понятие параметра на примере решения уравнения с параметром.

Для любого допустимого значения а указать как находится х.

Вопрос учащимся: Ребята, вы знаете как решать это уравнение ?

-В этом уравнении две неизвестных величины. Давайте решать уравнение перебором значений для а.

если а=2, то уравнение примет вид 2х-8=10-3х

Х=3,6(можно изобразить числовую прямую а и отмечать на ней значения х при заданном значении а )

Если а=-3, то уравнение примет вид -3х-8=-15-3х

0х=-7 уравнение решений не имеет

Если а=4,то уравнение примет вид 8х-8=40-3х

Нужно перебрать как можно больше значений а и указывать соответствующие им значения х . Вывод : перебором задачу не решить.

—А может мы делали какие-то одни и те же операции? (перенос из одной части в другую, нахождение неизвестного множителя)

—Какое выполняется всегда, заострять внимание на нем не нужно.

—А какое не всегда можно выполнить? (нахождение неизвестного множителя) Значит не при всех значениях а уравнение имеет корень.

Используя графическую интерпритацию записать ответ.

Итак решим уравнение :

ах+3х=5а+8 при любом а можно сделать перенос известных в одну сторону, а неизвестных в другую

х(а+3)=5а+8 при любом а можно х вынести за скобку

Чтобы найти х нужно (5а+8) разделить на (а+3), а это не всегда можно сделать.

Если а= -3, то уравнение примет вид ох=-7-решений нет

Если а#-3, то х=(5а+8)/(а+3). Желательно изобразить числовую прямую а и на ней отмечать все значения х , соответствующие данным значениям параметра а.

Ответ: если а=-3, то решений нет;

Если а#-3, то х=(5а+3)/(a+3)

Выполнение упражнений на закрепление.

Для любого допустимого значения а указать как находится х

-В уравнениях иногда некоторые коэффициенты заданы не конкретными числами, а обозначены буквами. Такие буквы называют параметрами. Предполагается, что эти параметры могут принимать любые числовые значения.

Решить уравнение с параметром – значит для любого допустимого значения параметра найти множество всех корней заданного уравнения.

Давайте составим алгоритм решения линейного уравнения с параметром .

-раскрыть скобки, если они есть

-перенести в одну сторону известные, в другую неизвестные (считаем х неизвестным)

-вынести х за скобки

-найти неизвестный множитель, учитывая допустимые значения параметра

Отработка навыка решения линейного уравнения с параметром

д) при каких значениях а уравнение 2(3х-2а)=2+ах не имеет решения ?

е) при каких значениях а уравнение 6(ах-1)-а=2(а+х)-7 имеет бесконечное множество решений ?

ж) при каких значениях а уравнение 2(а-2х)=ах+3 не имеет решения?

З) при каких значениях а уравнение 2(а+х)=3(1-х) имеет положительное решение?

и) при каких значениях а уравнение а(х-3)=2х+1 имеет решение , удовлетворяющее условию х

-Постарайтесь дать определение параметра своими словами

-Повторите алгоритм решения линейных уравнений с параметром

Темы факультативного курса,, Задачи с параметром” в 8 классе

Линейные уравнения

Автор работы: Пользователь скрыл имя, 21 Мая 2013 в 23:26, реферат

Краткое описание

Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

Прикрепленные файлы: 1 файл

Линейные уравнения.doc

Линейные уравнения

Уравнения с одной переменной.

Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.

Решить уравнение — значит найти все его корни или доказать, что корней нет.

Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

При решении уравнений используются следующие свойства:

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.

Если а¹0, то уравнение имеет единственное решение .

Если а=0, b=0, то уравнению удовлетворяет любое значение х.

Если а=0, b¹0, то уравнение не имеет решений, т.к. 0х=b не выполняется ни при одном значении переменной.

Пример 1. Решить уравнение: -8(11-2х)+40=3(5х-4)

Раскроем скобки в обеих частях уравнения, перенесем все слагаемые с х в левую часть уравнения, а слагаемые, не содержащие х, в правую часть, получим:

Пример 2. Решить уравнения:

Эти уравнения не являются линейными, но покажем, как можно решать такие уравнения.

3х2-5х=0; х(3х-5)=0. Произведение равно нулю, если один из множителей равен нулю, получаем х1=0; х2= .

Разложить на множители левую часть уравнения:

х2(х-2)-9(х-2)=(х-2)(х2-9)=(х- 2)(х-3)(х-3), т.е. (х-2)(х-3)(х+3)=0. Отсюда видно, что решениями этого уравнения являются числа х1=2, х2=3, х3=-3.

с) Представим 7х, как 3х+4х, тогда имеем: х2+3х+4х+12=0, х(х+3)+4(х+3)=0, (х+3)(х+4)=0, отсюда х1=-3, х2=- 4.

Пример 3. Решить уравнение: ½х+1ç+½х-1ç=3.

Напомним определение модуля числа:

Например: ½3½=3, ½0½=0, ½- 4½= 4.

В данном уравнении под знаком модуля стоят числа х-1 и х+1. Если х меньше, чем –1, то число х+1 отрицательное, тогда ½х+1½=-х-1. А если х>-1, то ½х+1½=х+1. При х=-1 ½х+1½=0.

а) Рассмотрим данное уравнение½х+1½+½х-1½=3 при х£-1, оно равносильно уравнению -х-1-х+1=3, -2х=3, х= , это число принадлежит множеству х£-1.

b) Пусть -1 ю х+1-х+1=3, 2¹3 уравнение не имеет решения на данном множестве.

с) Рассмотрим случай х>1.

х+1+х-1=3, 2х=3, х= . Это число принадлежит множеству х>1.

Ответ: х1=-1,5; х2=1,5.

Пример 4. Решить уравнение:½х+2½+3½х½=2½х-1½.

Покажем краткую запись решения уравнения, раскрывая знак модуля «по промежуткам».

–2 1, х+2+3х=2(х-1), 2х=- 4, х=-2Ï(1; +¥)

Пример 5. Решить уравнение: (а-1)(а+1)х=(а-1)(а+2), при всех значениях параметра а.

В этом уравнении на самом деле две переменных, но считают х–неизвестным, а а–параметром. Требуется решить уравнение относительно переменной х при любом значении параметра а.

Если а=1, то уравнение имеет вид 0×х=0, этому уравнению удовлетворяет любое число.

Если а=-1, то уравнение имеет вид 0×х=-2, этому уравнению не удовлетворяет ни одно число.

Если а¹1, а¹-1, тогда уравнение имеет единственное решение .

Ответ: если а=1, то х – любое число;

если а=-1, то нет решений;

Системы уравнений с двумя переменными.

Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство. Решить систему — значит найти все ее решения или доказать, что их нет. Две системы уравнений называются равносильными, если каждое решение первой системы является решением второй системы и каждое решение второй системы является решением первой системы или они обе не имеют решений.

При решении линейных систем используют метод подстановки и метод сложения.

Пример 1. Решить систему уравнений:

Для решения этой системы применим метод подстановки. Выразим из первого уравнения х и подставим это значение во второе уравнение системы, получим

Пример 2. Решить систему уравнений:

Для решения этой системы применим метод сложения уравнений. 8х=16, х=2. Подставим значение х=2 в первое уравнение, получим 10-у=9, у=1.

Пример 3. Решить систему уравнений:

Эта система равносильна одному уравнению 2х+у=5, т.к. второе уравнение получается из первого умножением на 3. Следовательно, ей удовлетворяет любая пара чисел (х; 5-2х). Система имеет бесконечное множество решений.

Ответ: (х; 5-2х), х–любое.

Пример 4. Решить систему уравнений:

Умножим первое уравнение на –2 и сложим со вторым уравнением, получим 0×х+0×у=-6. Этому уравнению не удовлетворяет ни одна пара чисел. Следовательно, эта система не имеет решений.

Ответ: система не имеет решений.

Пример 5. Решить систему:

Из второго уравнения выражаем х=у+2а+1 и подставляем это значение х в первое уравнение системы, получаем . При а=-2 уравнение не а=-2 имеет решения, если а¹-2, то .

Ответ: при a=-2система не имеет решения,

при а¹-2 система имеет решение .

Пример 6. Решить систему уравнений:

Нам дана система из трех уравнений с тремя неизвестными. Применим метод Гаусса, который состоит в том, что равносильными преобразованиями приводят данную систему к треугольной форме. Прибавим к первому уравнению второе, умноженное на –2.

Далее к третьему уравнению системы прибавим второе, умноженное на –3,

наконец прибавим к этому уравнению уравнение у-z=-1, умноженное на 2, получим — 4z=-12, z=3. Итак получаем систему уравнений:

z=3, которая равносильна данной.

Система такого вида называется треугольной.

Курсовая работа: Методы решения уравнений, содержащих параметр

Выпускная квалификационная работа

Выполнил тудент V курса математического факультета Кузнецов Е.М.

Вятский государственный гуманитарный университет

Изучение многих физических процессов и геометрических закономерностей часто приводит к решению уравнений, содержащих параметр. Решение задач с параметрами вызывает большие трудности у учащихся, так как их изучение не является отдельной составляющей школьного курса математики, и рассматривается только на немногочисленных факультативных занятиях.

Трудности при изучении данного вида уравнений связаны со следующими их особенностями:

Обилие формул и методов, используемых при решении уравнений данного вида;

Возможность решения одного и того же уравнения, содержащего параметр различными методами;

Выше изложенное обусловило проблему исследования, которая заключается в исследовании целесообразности и возможности изучения методов решения уравнений, содержащих параметры, в старших классах средней школы и в разработке соответствующей методики. Решение этой проблемы составило цель исследования.

Объектом исследования является процесс обучения алгебре в 7-9 классах и алгебре и началам анализа в 10-11 классах.

Предметом исследования являются классы уравнений, содержащих параметры, и их методы решения.

Гипотеза исследования: применение разработанной на основе общих методов решения уравнений, содержащих параметры, методики их решения позволит учащимся решать уравнения, содержащие параметры, на сознательной основе, выбирать наиболее рациональный метод решения, применять разные методы решения.

Проблема, предмет, гипотеза исследования обусловили следующие задачи:

проанализировать действующие учебники алгебры и начала анализа для выявления в них использования понятия «параметра» и методов решения уравнений, содержащих параметр;

выделить классы уравнений, содержащих параметры, и их методы решения;

разработать программу факультативных занятий на тему «Методы решения уравнений, содержащих параметр»;

осуществить опытное преподавание.

(F)

с неизвестными х, у, . z и с параметрами . При всякой допустимой системе значений параметров α0, β0, . γ0 уравнение (F) обращается в уравнение

(F0)

с неизвестными х, у. z, не содержащих параметров. Уравнение (F0) имеет некоторое вполне определенное множество (быть, может, пустое) решений.

Аналогично рассматриваются неравенства и системы, содержащие параметры. Допустимыми системами значений параметров считаются системы, допустимые для каждого уравнения в отдельности.

Определение. Решить уравнение, содержащее параметры, это значит, для каждой допустимой системы значений параметров найти множество всех решений данного уравнения.

Понятие эквивалентности применительно к уравнениям, содержащие параметр, устанавливается следующим образом.

Определение. Два уравнения

F(х, у, . z; ) =0 (F),

Ф (х, у, . z; ) =0 (Ф)

с неизвестным х, у. z и с параметрами называются эквивалентными, если для обоих уравнений множество допустимых систем значений параметров одно и то же и при всякой допустимой системе значений, параметров оба уравнения эквивалентны.

Итак, эквивалентные уравнения при всякой допустимой системе значений параметров имеют одно и то же множество решений.

Преобразование уравнения, изменяющее множество допустимых систем значений параметров, приводит к уравнению, не эквивалентному данному уравнению.

Предположим, что каждое из неизвестных, содержащихся в уравнении

F(x, у, z; )=0 (F)

задано в виде некоторой функции от параметров:

х = х();

у = у();

z = z(). (Х)

Говорят, что система функций (Х), заданных совместно, удовлетворяет уравнению (F), если при подстановке этих функций вместо неизвестных х, у. z в уравнение (F) левая его часть обращается в нуль тождественно при всех допустимых значениях параметров:

F (x(), y(),…,z ())≡0.

При всякой допустимой системе численных значений параметров = α0, , . соответствующие значения функций (Х) образуют решение уравнения [1].

Проанализируем действующие учебники курса алгебры и начала анализа, чтобы выяснить, насколько в них представлены задания, использующие понятие «параметр», и методы решения уравнений, содержащих параметр.

Алгебра. 7 класс.

При изучении уравнений представлено два задания с параметром (№№236, 243). Рассматриваются простейшие линейные уравнения, но коэффициент при х является параметром и необходимо исследовать на количество корней или принадлежность корня к целым числам.

Также в данном учебнике в §5 «Линейная функция» (глава 2 «Функции») рассматривается прямая пропорциональность, где, не вводя понятие параметр, его используют. А именно, выясняется расположение графика функции в зависимости от коэффициента , который и является параметром.

Следующие задания с параметром предлагаются уже только в дополнительных заданиях к главе «Системы линейных уравнений» (№№1214-1216), где необходимо найти значение параметра, если известна точка пересечения графиков (см. [28]).

Алгебра 8 класс.

При изучении темы «Квадратные уравнения» в разделе дополнительных упражнений для более углубленного повторения материала предлагаются уравнения, содержащие параметр (№№ 645, 646, 660, 663-672), где необходимо найти значение переменной (параметра), если известен корень уравнения или какое-то соотношение корней. Можно выделить два номера (№№ 661, 662), где необходимо найти значение параметра, если известны знаки корней уравнения.

При изучении остальных тем учебника 8 класса параметр не использовался.

Алгебра. 9 класс.

Использование параметра ведется в главе «Квадратичная функция». При формулировании свойств функции в зависимости от коэффициента , и предлагается для решения задача на нахождение нулей функции, которая зависит от параметра. В разделе «дополнительные задачи» приводятся задания с параметром на исследование:

расположения графика относительно прямой;

вершины параболы; нулей функции;

принадлежность данных точек функции, содержащей два параметра.

При рассмотрении графиков функций и строятся предпосылки для решения уравнений, содержащих параметр, графическим методом (параллельный перенос).

При изучении систем уравнений предлагаются дополнительные задачи с параметром на исследование количества решений системы.

В системе упражнений для повторения курса VII-IX классов заданий, содержащих параметр, не представлено (см. [29]).

Мордкович. А. Г. «Алгебра 7 по 9 класс » и «Алгебра и начала анализа 10 – 11 класс»

Надо отметить, что данное учебное пособие состоит из двух частей: из учебника и задачника (см. [30], [31]).

При изучении линейной функции (7 класс глава 6 §28) рассматривается линейное уравнение с двумя переменными и его график, где учащихся знакомят с параметром в неявном виде, то есть при рассмотрении нахождения корня линейного уравнения с одной неизвестной ставится ограничение на переменную a (a0). При изучении параметра, такие значения переменной и будем называть особыми, для которых будут соответствовать частные решения.

Номера 828-831 задачника содержат задания, в которых требуется нахождение коэффициента уравнения если известно решение уравнения, то есть говорится о том, чтобы найти значения параметра, если известно решение уравнения. В номерах 902-903 необходимо найти значения переменной, если известно, что график функции проходит через данную точку. Эти номера подготавливают ученика к методу «ветвлений» решения уравнений с параметром, о котором расскажем позднее в пункте 4.1.1.

Рассмотрим учебник 8 класса.

В главе «Квадратичная функция. Функция » при изучении функции , ее свойств и графика предлагаются задачи, которые подготавливают ученика к решению уравнений с параметром, где требуется применение производной. А именно номера 474-475, где необходимо найти коэффициенты уравнения данной функции, если известно наибольшее или наименьшее значение функции. И также номера 483-488 в которых известно точки пересечения с осями координат. Особенно нужно выделить следующие номера: № 498-503, где от ученика требуется творческий подход к их решению.

В § 14 «Графическое решение квадратных уравнений» предлагаются задания, где непосредственно представлены уравнения, содержащие параметр. В номерах 518-522 предлагаются уравнения, содержащие параметр, где необходимо найти значение параметра, если дано уравнение, которое имеет определенное количество корней. Эти задания повышенного уровня. Также предлагается домашняя контрольная работа, в которой имеется уравнение, содержащее параметр. Предлагая эти уравнения для решения, учителю необходимо показать некоторые методы решения квадратных уравнений с параметром. В частности два основных метода: аналитический и графический, но так как времени на рассмотрение этих методов школьной программой в 8 классе не предусмотрено, то учителю приходится чаще всего рассматривать эти методы на факультативах.

В главе 4 «Квадратные уравнения» непосредственно приводятся аналитический и графический методы решения уравнений. В задачнике представлены уравнения с параметром, где необходимо: выяснить вид квадратного уравнения и решить его при найденных значениях параметра; найти значения параметра, если известен корень квадратного уравнения.

При нахождении корней квадратного уравнения снова рассматриваются уравнения, содержащие параметр, где необходимо найти значение параметра при данном количестве корней квадратного уравнения (№№ 820, 821). Нужно отметить №838, где необходимо выбрать те уравнения, которые имеют два корня при любом значении параметра. Особенно можно выделить следующие номера: 839-841, где ставится задача решить уравнение с параметром, в №842 – необходимо доказать, что уравнение не имеет единственного корня ни при каком значении параметра.

При изучении теоремы Виета предлагаются задания на нахождение значения параметра при данном количестве корней (№ 969). Имеются задачи (№№971, 972) на применение обратного утверждения теоремы Виета, говорящее о том, что сумма и произведение корней уравнения равны коэффициентам этого уравнения. И предлагаются задания повышенного уровня с параметром – номера 999-1005. В них от ученика требуется полное понимание применения теоремы Виета и обратного утверждения. Имеется домашняя контрольная работа, в которой снова присутствуют уравнения с параметром.

При изучении квадратных неравенств, предлагаются задачи (№№ 1360-1365) на нахождение значений параметра, при которых уравнение имеет или не имеет действительных корней (№№ 1366, 1367). Особенно можно выделить №1363 и №1365, так как параметр содержится в коэффициенте при . Это потребует рассмотреть отдельно случаи, когда этот коэффициент равен нулю (см. [32], [33]).

Начало курса алгебры 9 класса начинается с повторения, где предлагаются задачи с параметром (№11, №17-19, №50): на нахождение значения параметра при данных количествах корней; на нахождение значения параметра, при которых во множестве решений неравенства содержится определенное количество чисел, принадлежащих тому или иному множеству.

Рассматривая следующую главу «Неравенства и системы неравенств», нельзя не отметить систему задач, содержащую задания с параметрами (№№85-87). В этих заданиях предлагаются простейшие системы с параметром (см. [34], [35]).

Рассмотрим учебник алгебры и начала анализа 10-11 класса.

Сначала параметр встречается при изучении арккосинуса, арксинуса, арктангенса, арккотангенса и решении уравнений вида , , , . Рассматривается решение этих уравнений в общем виде, и в зависимости от значения а рассматриваются частные случаи, причем ставится ограничение на множество значений переменной а (, для первых двух уравнений).

Следующие задачи, содержащие параметр, предлагаются при изучении производной функции. Номера 803, 808, 853 содержат задания с параметром, которые предложены для закрепления знаний о касательной.

Отметим следующие задания (№№889, 914-917), содержащие параметр, на исследование функции на монотонность. Также отметим номера 926-929, так как в них необходимо решить уравнения третьей и четвертой степени графическим методом.

Особое геометрическое и алгебраическое значение имеют задачи с параметром, которые предложены в главе «Первообразная и интеграл». Предложено следующее задание (номера 1061, 1062): найти значения параметра, который содержится в функции, если известна площадь фигуры, ограниченной этой функцией.

В конце изучения курса алгебры и начала анализа в 11 классе выделен параграф для решения уравнений, содержащих параметр. В параграфе объясняется, что такое параметр на простейших уравнениях, рассматриваются линейные и квадратные уравнения.

Задачи, которые предлагаются для этой темы, где предложены различные задания для обобщения всех умений решения задач (номера 1855-1880).

Обобщая все задачи с параметром можно заявить, что данный учебник предлагает параметр как для углубленного изучения пройденных тем, как для изучения непосредственно самого параметра (см. [36], [37]).

Алимов Ш.А. и др. «Алгебра с 7 по 9 класс» и «Алгебра и начала анализа 10 – 11 класс»

Начнем анализ этой группы учебников с 7 класса.

Уже при изучении темы «Уравнения с одним неизвестным» предлагаются задания, которые содержит задачи с параметром (№№123-125), где нужно решить простейшие линейные уравнения на нахождение значения параметра, при которых уравнение имеет корни или не имеет корней (№123,124). Особенно можно выделить номер 125, который предлагается в задачах повышенного уровня. Особенность заданий состоит в том, что предлагаются линейные, дробно-рациональные и квадратные уравнения с параметром при старшем коэффициенте.

После рассмотрения различных способов решения систем уравнений с двумя неизвестными предлагаются задачи, одна из которых содержит систему с двумя параметрами, где необходимо найти эти параметры, если система имеет единственное решение; бесконечное множество решений; не имеет решений (см. [25]).

Алгебра 8 класс.

Уравнения, содержащие параметр, встречаются впервые при изучении квадратных уравнений (№№ 414, 428, 442-443, 448). Из них можно выделить номера 442, 443, 448, в которых предлагаются задания на исследование количества корней уравнения в зависимости от значения параметра.

При изучении квадратичной функции рассматривается всего два номера с заданиями, содержащими параметр (№№602, 603). В этих заданиях необходимо найти значение параметра, если известно пересечение двух функций в заданной точке и параметр, содержится в коэффициенте одной из функций.

На этом авторы прекращают использование параметра при изучении тем учебника, но большое внимание уделяют параметру при повторении. Предлагаются задания, содержащие параметр, в основном, для повторения квадратных уравнений ( №№ 791, 792, 809, 818, 819, 822). Все номера одного характера – исследовать корни квадратного уравнения, то есть найти количество корней или сами корни в зависимости от значений параметра.

Уравнения аналогичного характера авторы приводят для внеклассной работы (№№ 889-896, 900, 902).

Выводы: Главным плюсом этого учебника является то, что авторы применяли уравнения, содержащие параметр, именно там, где его использование очень широко – при изучении квадратных уравнений. В этой теме количество задач, содержащих параметр, не может быть ограничено.

При изучении курса алгебры 9 класса уравнения, содержащие параметр предлагаются только в задачах для внеклассной работы (№№ 826-833). Предлагаются квадратные уравнения, где необходимо:

а) найти значения параметра, при которых уравнение имеет или не имеет корни;

б) определить принадлежность корней уравнения тому или иному числовому множеству.

Также предлагаются неравенства с параметром, где необходимо найти значение параметра, если неравенство выполняется при всех значениях неизвестной (см. [26]).

Алгебра и начала анализа 10-11 класс.

В этом учебнике при изучении уравнения рассматривается принадлежность корня множествам , . И это тоже в какой-то степени уравнение с параметром решаемое методом «ветвлений» (пункт 4.1.1). Аналогично при рассмотрении уравнения , , .

Обобщая знания, полученные при изучении третьей главы «Тригонометрические уравнения и неравенства», предложено тригонометрическое уравнение четвертой степени с параметром, классифицированное как задача повышенной трудности.

При повторении курса алгебры и начала анализа 10 класса в системе задач не встречается заданий с параметром и можно утверждать, что в системе изучения этого курса авторы не уделяют внимания к параметру как таковому.

При изучении производной авторы предлагают четыре упражнения с параметром (№№ 544-547), где дана функция, зависящая как от неизвестной, так и от параметра и нужно найти значения параметра, если производная имеет определенный знак или равна нулю.

При изучении же темы «Применение производной к исследованию функций» система задач содержит всего одно задание с параметром (№559).

Аналогично, в системе задач темы «Интеграл» предложена всего одна задача с параметром (№ 670), где нужно найти площадь фигуры, ограниченной параболой, где заключен параметр, и прямой.

При повторении курса алгебры и начала анализа 11 класса предложена одна задача с параметром (№718). В системе задач при итоговом повторении всего курса алгебры содержатся задачи с параметром, аналогичные всем рассмотренным ранее (в предыдущих учебниках и данном). Такими являются: №№ 781, 782 – это при повторении решения уравнений; №№ 828-830 – при повторении решения неравенств.

Выводы: Главным плюсом этого учебника является то, что предложены примерные виды заданий, предлагавшиеся на вступительных экзаменах в вузы. Одними из таких заданий являются задачи с параметром (№№ 974-976).

В отличие от учебника Мордковича система задач с параметрами предложена только для углубленного изучения и повторения пройденного материала (см. [27]).

Проведенный анализ позволяет сделать следующие выводы:

в каждом проанализированном учебнике задания, содержащие параметр, используется для проверки знаний и умений, приобретенных во время изучения той или иной темы. Предлагаются задания творческого характера, требующие от учащихся применения полученных знаний и умений в нестандартных условиях;

ни в одном из рассмотренных учебников не даётся чёткого определения параметра;

во всех учебниках задания однотипны;

Линейные и квадратные уравнения, содержащие параметр, можно объединить в одну группу – группу уравнений с параметром не выше второй степени.

Уравнения с параметром не выше второй степени являются самыми распространенными в практике итоговых и конкурсных заданий. Их общий вид определяется многочленом . Для таких уравнений всякое частное уравнение не выше второй степени принадлежит одному из следующих типов:

, тогда ,

и , тогда решений нет,

и , тогда ,

, , тогда ,

, , тогда решений нет,

, , тогда .

Контрольные значения параметра определяются уравнением . На выделенных контрольными значениями промежутках допустимых значений параметра дискриминант имеет определенный знак, соответствующие частные уравнения принадлежат одному из двух последних типов.

Тогда решением всякого уравнения с параметром не выше второй степени осуществляется по следующим этапам:

На числовой прямой отмечаются все контрольные значения параметра, для которых соответствующие частные уравнения не определены.

На области допустимых значений параметра исходного уравнения при помощи равносильных преобразований приводится к виду .

Выделяют множество контрольных значений параметра, для которых .

Если уравнение имеет конечное множество решений, то для каждого найденного контрольного значения параметра соответствующее частное уравнение решается отдельно. Проводится классификация частных уравнений по первым трем типам.

На бесконечном множестве решений уравнения проводится решение уравнения , выделяются типы бесконечных и пустых особых частных уравнений. Множеству значений параметра, для которых и , соответствует третий тип не особых частных уравнений.

Выделяются контрольные значения параметра, для которых дискриминант обращается в нуль. Соответствующие не особые частные уравнения имеют двукратный корень .

Найденные контрольные значения параметра разбивают область допустимых значений параметра на промежутки. На каждом из промежутков определяется знак дискриминанта.

Множеству значений параметра, для которых и , соответствует тип не особых частных уравнений, не имеющих решений, для значений параметра из множества, где и , частные уравнения имеют два различных действительных корня (см. [1],[7]).

Пример. Решить уравнение

Решение. Здесь контрольными будут те значения параметра, при которых коэффициент при х обращается в 0. Такими значениями являются, а=0 и а=2. При этих значениях параметра а, невозможно деление обеих частей уравнения на коэффициент при х. В то же время при значениях параметра а≠0 и а≠2 деление возможно. Таким образом, целесообразно множество всех действительных значений параметра разбить на подмножества

и решить уравнение (2) на каждом из этих подмножеств, т. е. решить уравнение (2) как семейство уравнений, получающихся из него при следующих значениях параметра: 1) а=0; 2) а=2; 3) а≠0, а≠2.

Рассмотрим эти случаи.

1) При а=0 уравнение (2) принимает вид 0∙х=2. Это уравнение не имеет корней.

2) При а=2 уравнение (2) принимает вид 0∙х=0. Корнем этого уравнения является любое действительное число.

3) При а≠0, а≠2 уравнение соответствует третьему типу откуда х ==.

0твет: 1) если а=0, то корней нет;

2) если а=2, то х — любое действительное число;

3) если а≠0, а≠2 , то х = .

Пример. Решить уравнение

(а — 1)∙ х2+2∙ (2а+1)∙ х + (4а+3) =0. (3)

Решение. В данном случае контрольным значением параметра a является единица. Дело в том, что при a=1 уравнение (3) является линейным, а при а≠1 оно квадратное (в этом и состоит качественное изменение уравнения). Значит, целесообразно рассмотреть уравнение (3) как семейство уравнений, получающихся из него при следующих значениях параметра: 1) a=1; 2) а≠1.

Рассмотрим эти случаи.

1) При a=1 уравнение (3) примет вид 6х+7=0. Из этого уравнения находим х = – .

2) Из множества значений параметра а≠1 выделим те значения, при которых дискриминант уравнения (3) обращается в 0.

Дело в том, что если дискриминант D=0 при а=ао, то при переходе значения D через точку ао дискриминант может изменить знак (например, при а ао D > 0). Вместе с этим при переходе через точку ао меняется и число действительных корней квадратного уравнения (в нашем примере при а ао D > 0 уравнение имеет два корня). Значит, можно говорить о качественном изменении уравнения. Поэтому значения параметра, при которых обращается в 0 дискриминант квадратного уравнения, также относят к контрольным значениям.

Составим дискриминант уравнения (3):

=(2а+ l)2 — (а — 1) (4а+3). После упрощений получаем = 5а+4.

Из уравнения =0 находим — второе контрольное значение параметра а. При этом если , то D 0,5 х1,2 = 0,5∙(1 ± );

при а = 0,5 х = 0,5;

при а 0,5, следовательно, х1– корень уравнения при а≥1.

при а ≥ 1 х = 0,5∙(1 + );

Область допустимых значений такого уравнения находится как пересечение областей допустимых значений функций f(x) и φ (х). Для решения уравнения (*) необходимо рассмотреть следующие случаи:

При а=b=1 решением уравнения (*) является область его допустимых значений D.

При а=1, b≠1 решением уравнения (*) служит решение уравнения φ(х)=0 на области допустимых значений D.

При а≠1, b=1 решение уравнения (*) находится как решение уравнения f(х) = 0 на области D.

При а=b (а>0, а≠1, b>0, b≠1) уравнение (*) равносильно уравнению f(х) = φ(х) на области D.

При а≠b (а>0, а≠1, b>0, b≠1) уравнение (*) тождественно уравнению (c>0, c≠1) на области D (см. [1]).

Пример. Решить уравнение: а х + 1 = b 3 – х

Решение. ОДЗ уравнения: х R, а > 0, b >0.

1) При а ≤ 0, b ≤ 0 уравнение не имеет смысла;

2) При а = b = 1, х R;

3) При а = 1, b ≠ 1 имеем: b 3 – х = 1 или 3 – х = 0 х = 3;

4) При а ≠ 1, b = 1 получим: а х + 1 = 1 или х + 1 = 0 х = -1;

5) При а = b (а > 0, а ≠ 1, b >0, b ≠ 1) имеем: х + 1 =3 – х х = 1;

6) При , получим: уравнение , которое не имеет решения;

7) При а ≠ b и (а > 0, а ≠ 1, b >0, b ≠ 1) прологарифмируем исходное уравнение по основанию а, получим:

, х + 1 = (3 – х) log a b , .

Ответ: при а ≤ 0, b ≤ 0 или , уравнение не имеет решений;

при а = b = 1, х R;

при а = 1, b ≠ 1 х = 3;

при а ≠ 1, b = 1 х = -1;

при а = b (а > 0, а ≠ 1, b >0, b ≠ 1) х = 1;

при а ≠ b (а > 0, а ≠ 1, b >0, b ≠ 1) .

Логарифмические уравнения, содержащие параметр

Решение логарифмических уравнений с параметрами сводится к нахождению корней элементарного логарифмического уравнения. Важным моментом решения уравнений такого типа является проверка принадлежности найденных корней ОДЗ исходного уравнения (см. [1]).

Пример. Решить уравнение

2 – log (1 + х) = 3 log а — log (х 2 – 1)2.

Решение. ОДЗ: х > 1, а > 0, а ≠ 1.

Осуществим на ОДЗ цепочку равносильных преобразований исходного уравнения:

log а а2 + log a(х2 — 1) = log а () 3 + log a,

log а (а2 (х2 — 1)) = log а (() 3),

а2 (х2 — 1) = (х — 1) ,

а2 (х — 1) (х + 1) = (х — 1) .

Так как х ≠ -1 и х ≠ 1, сократим обе части уравнения на (х — 1) и на . Тогда получим = .

Возведем обе части полученного уравнения в квадрат:

а4 (х + 1) = х – 1 а4 х + а4 = х – 1 х( 1 — а4 ) = а4 + 1.

Так как а ≠ -1 и а ≠ 1, то .

Для того чтобы значения х являлось решением уравнения, должно выполняться условие х > 1, то есть .

Выясним, при каких значениях параметра а, это неравенство истинно:

, .

Так как а > 0, то полученная дробь положительна, если 1 – а4 > 0, то есть при а 1, значит при 0 1 решений нет;


источники:

http://www.referat911.ru/Matematika/linejnye-uravneniya/135541-2082540-place1.html

http://www.bestreferat.ru/referat-95515.html

Название: Методы решения уравнений, содержащих параметр
Раздел: Рефераты по математике
Тип: курсовая работа Добавлен 07:41:09 23 марта 2008 Похожие работы
Просмотров: 7519 Комментариев: 21 Оценило: 3 человек Средний балл: 4.3 Оценка: неизвестно Скачать