Квадратичную форму уравнения к каноническому виду

Приведение кривой второго порядка к каноническому виду

Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.

Решение. Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы . Находим собственные числа и собственные векторы этой матрицы:

Характеристическое уравнение:
; λ1=-2, λ2=8. Вид квадратичной формы: .
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x1 2 -2y1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. .
Собственный вектор, отвечающий числу λ=-2 при x1=1: x 1=(1,-1).
В качестве единичного собственного вектора принимаем вектор , где – длина вектора x 1.
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
.
x 2=(1,1); .
Итак, имеем новый ортонормированный базис ( i 1, j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
или

Задание. Привести к каноническому виду уравнение линии 17x 2 + 12xy + 8y 2 — 20 = 0.
Решение.Пример 2

Задание. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм и определить её вид. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Решение

Задание. Привести уравнение к каноническому виду: 16x 2 — 9y 2 -64x — 8y +199 = 0.
Решение.Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис. Изобразить гиперболу на чертеже, указав фокусы, асимптоты и директрисы.
Решение:Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение:Скачать решение

76. Приведение квадратичных форм к каноническому виду

Рассмотрим некоторое линейное преобразование А с матрицей .

Это симметрическое преобразование можно записать в виде:

Y1 = a11x1 + a12x2

Y2 = a12x1 + a22x2

Где у1 и у2 – координаты вектора в базисе .

Очевидно, что квадратичная форма может быть записана в виде

Ф(х1, х2) = х1у1 + х2у2.

Как видно, геометрический смысл числового значения квадратичной формы Ф в точке с координатами х1 и х2 – скалярное произведение .

Если взять другой ортонормированный базис на плоскости, то в нем квадратичная форма Ф будет выглядеть иначе, хотя ее числовое значение в каждой геометрической точке и не изменится. Если найти такой базис, в котором квадратичная форма не будет содержать координат в первой степени, а только координаты в квадрате, то квадратичную форму можно будет привести к каноническому виду.

Если в качестве базиса взять совокупность собственных векторов линейного преобразования, то в этом базисе матрица линейного преобразования имеет вид:

.

При переходе к новому базису от переменных х1 и х2 мы переходим к переменным и . Тогда:

Тогда .

Выражение называется Каноническим видом квадратичной формы. Аналогично можно привести к каноническому виду квадратичную форму с большим числом переменных.

Теория квадратичных форм используется для приведения к каноническому виду уравнений кривых и поверхностей второго порядка.

Пример. Привести к каноническому виду квадратичную форму

Ф(х1, х2) = 27.

Коэффициенты: а11 = 27, а12 = 5, а22 = 3.

Составим характеристическое уравнение: ;

(27 — l)(3 — l) – 25 = 0

Пример. Привести к каноническому виду уравнение второго порядка:

17×2 + 12xy + 8y2 – 20 = 0.

Коэффициенты а11 = 17, а12 = 6, а22 = 8. А =

Составим характеристическое уравнение:

(17 — l)(8 — l) — 36 = 0

136 — 8l — 17l + l2 – 36 = 0

L2 — 25l + 100 = 0

Итого: — каноническое уравнение эллипса.

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

Решение: Составим характеристическое уравнение квадратичной формы : при

Решив это уравнение, получим l1 = 2, l2 = 6.

Найдем координаты собственных векторов:

Полагая m1 = 1, получим n1 =

Полагая m2 = 1, получим n2 =

Собственные векторы:

Находим координаты единичных векторов нового базиса.

Имеем следующее уравнение линии в новой системе координат:

Каноническое уравнение линии в новой системе координат будет иметь вид:

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

Решение: Составим характеристическое уравнение квадратичной формы : при

Решив это уравнение, получим l1 = 1, l2 = 11.

Найдем координаты собственных векторов:

Полагая m1 = 1, получим n1 =

Полагая m2 = 1, получим n2 =

Собственные векторы:

Находим координаты единичных векторов нового базиса.

Имеем следующее уравнение линии в новой системе координат:

Каноническое уравнение линии в новой системе координат будет иметь вид:

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

4ху + 3у2 + 16 = 0

Коэффициенты: a11 = 0; a12 = 2; a22 = 3.

Характеристическое уравнение:

Корни: l1 = -1, l2 = 4.

Для l1 = -1 Для l2 = 4

M1 = 1; n1 = -0,5; m2 = 1; n2 = 2;

= (1; -0,5) = (1; 2)

Получаем: — каноническое уравнение гиперболы.

При использовании компьютерной версии “Курса высшей математики” возможно запустить программу, которая решает рассморенные выше примеры для любых начальных условий.

Для запуска программы дважды щелкните на значке:

В открывшемся окне программы введите коэффициенты квадратичной формы и нажмите Enter.

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

Квадратичные формы

Содержание:

Квадратичные формы и их определение

Определение. Квадратичной формой L (x1, x2, . xn) от n переменных называется сумма, каждый член которой является или квадратом одной из переменных, или произведением двух различных переменных, взятых с некоторым коэффициентом, то есть
(2.44)

Допускаем, что в квадратичной форме (2.44) aij — действительные числа. Распишем квадратичную форму (2.44), разбив слагаемые, содержащие произведения переменных, на две равные части:

Матрица
(2.45)

или A = ij> (i, j = 1, 2, . n) является симметричной, так как aij = aji, называется матрицей квадратичной формы (2.44).

Рангом квадратичной формы называется ранг ее матрицы. Квадратичная форма называется невырожденной, если ее матрица невырожденная.
Если то квадратичную форму можно переписать в матричном виде L (x1, x2, . xn) = X T AX.

Выражение X T AX представляет собой квадратичную форму в матричном виде.

Пример 1. Записать в матричном виде квадратичную форму

Решение. Матрица данной квадратичной формы имеет вид

А =

Значит,

Квадратичная форма называется канонической (или другими словами, имеет канонический вид), если все aij = 0, когда i ≠ j. Тогда квадратичная форма будет иметь вид

Рассмотрим следующую теорему.

ТЕОРЕМА 1. Произвольная квадратичная форма приводится к каноническому виду.

Доказательство. Пусть задана квадратичная форма (2.44) с матрицей (2.45) в базисе . Так как A — симметричная матрица, то существует ортогональная матрица B такая, что.

Матрица B является матрицей перехода от базиса
(2.46)
к некоторому базису
. (2.47)

Примечание. Действительная квадратная матрица называется ортогональной, если сумма квадратов элементов каждого столбца равна единице и сумма произведений соответствующих элементов из двух разных столбцов равна нулю. Необходимое и достаточное условие ортогональности матрицы В является условие В T ⋅ B = Е.

Пусть X и Y являются векторами-столбцами из координат вектора соответственно в базисах (2.46) и (2.47). Тогда X = BY и

или
(2.48)

Примечание. При доказательстве данной теоремы использовали транспонирование произведения матриц по формуле (СY) T = Y T ⋅ C T .

Заметим, что в канонической форме (2.48) λ1, λ2, . λn являются собственными числами матрицы A.

Пример 2. Привести квадратичную форму к каноническому виду с помощью ортогональной матрицы и найти ее.

Решение. Матрица данной квадратичной формы имеет вид . Запишем систему типа (2.39) для нахождения собственных чисел и собственных векторов
(2.49)
Характеристическое уравнение данной системы имеет вид
или (2 – λ) (5 – λ) – 4 = 0.
Решив данное уравнение, находим λ1 = 6, λ2 = 1. Значит канонический вид данной квадратичной формы является .
Найдем ортогональную матрицу.

Столбцами ортогональной матрицы, которая приводит квадратичную форму к каноническому виду, является ортонормированный собственные вектор-столбец матрицы A.

Сначала найдем нормированный собственный вектор-столбец матрицы A с собственным значением λ1 = 6. Для этого из системы (2.49) имеем систему для нахождения координат вектора:

Из данной системы находим x2 = 2x1 или u2 = 2u1. Значит, при произвольном u1, отличном от нуля, столбец является собственным вектором-столбиком матрицы A, а столбец является нормированным собственным вектором-столбиком матрицы A. Здесь использовано, что .
Аналогично находим вектор-столбец матрицы A с собственным значением λ2 = 1, а именно из системы:

Находим x1 = –2x2 или при произвольном s, отличном от нуля, столбец является собственным вектором матрицы A. Столбец является нормированным собственным вектором матрицы A. Значит, искомая матрица имеет вид:

Замечание. Легко проверить, что для данного примера 2.
Рассмотрим на примере еще один метод приведения квадратичной формы к каноническому виду.

Метод Лагранжа приведения квадратичной формы к каноническому виду заключается в последовательном выделении полных квадратов.

Пример 3. Привести к каноническому виду квадратичную форму методом Лагранжа. Сначала выделим полный квадрат при переменной x1, коэффициент при которой отличен от нуля.

Итак, невырожденное линейное преобразование

приводит данную квадратичную форму к каноническому виду

Канонический вид квадратичной формы не является однозначным, так как одна и та же квадратичная форма может быть приведена к каноническому виду многими способами. Однако полученные разными способами квадратичные формы имеют ряд общих свойств.

Сформулируем одно из этих свойств, которое выражает закон инерции квадратичных форм, и заключается в следующем: все канонические формы, к которым приводится данная квадратичная форма, имеют:
1) одно и то же число нулевых коэффициентов;
2) одно и то же число положительных коэффициентов;
3) одно и то же число отрицательных коэффициентов.

Определение 1. Квадратичная форма L (x1, x2, . xn) называется положительно определенной, если для всех действительных значений x1, x2, . xn используется неравенство L (x1, x2, . xn) > 0.

Определение 2. Если L (x1, x2, . xn) является положительно определенной формой, то квадратичная формаL (x1, x2, . xn) T AX была положительно (отрицательно) определенной, необходимо и достаточно, чтобы все собственные значения λi (i = 1, 2, . n) матрицы A были положительными (отрицательными).

Данную теорему приводим без доказательства.

Во многих случаях для установления знакоопределенности квадратичной формы удобно применять критерии Сильвестра.

ТЕОРЕМА 3. Для того чтобы квадратичная форма была положительно определенной, необходимо и достаточно, чтобы все главные миноры матрицы этой формы были положительными, то есть
где
Следует заметить, что для отрицательно определенных квадратичных форм знаки главных миноров чередуются, начиная со знака «минус» для минора первого порядка.

Например, квадратичная форма L в примере 2 является положительно определенной на основании теоремы 2, так как корни характеристического уравнения λ1 = 6 и λ2 = 1 являются положительными.
Второй способ. Так как главные миноры матрицы A
являются положительными, то по критерию Сильвестра данная квадратичная форма является положительно определенной.

Квадратичные формы

Однородный многочлен второй степени относительно переменных

называется квадратичной формой от этих переменных. Если взять то квадратическую форму (1.26) можно записать в виде:

Выражение (1.28), а следует и квадратичная форма (1.26) полностью определяется матрицей которая называется матрицей квадратичной формы (1.26).

Выполняя замену базиса, квадратичную форму (1.26) можно привести к виду:

где — новые переменные, что линейно выражаются через (1.28), — собственные значения матрицы

Выражение (1.29) называется каноническим видом квадратичной формы (1.26).

Рассмотрим квадратичную форму где — матрица коэффициентов

Тогда квадратичную форму можно записать так:

Квадратичная форма называется положительно определенной, если для всех действительных значений выполняется неравенство и отрицательной, если для всех действительных значений выполняется неравенство

Если положительно определена, то квадратичная форма называется отрицательно определенной.

Решение примеров:

Пример 1.99

является отрицательно определенной.

Пример 1.100

Используя теорию квадратичных форм, привести к каноническому виду уравнения линии второго порядка

Решение. Уравнение линии запишем в виде в котором

Сложим характеристическое уравнение матрицы и найдем ее собственные значения.

или

Корни уравнения являются собственными значениями. Следует, уравнение линии преобразуется в вид или Полученная линия — гипербола.

Свойства квадратичной формы (1.30) связаны с собственными числами матрицы

Пример 1.101

Привести к каноническому виду уравнения линии

Решение. Группа старших членов этого уравнения квадратическую форму Ее матрица

Собственными значениями будут числа Следует квадратичная форма преобразуется к виду а данное уравнение — к виду или Это эллипс.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://matica.org.ua/metodichki-i-knigi-po-matematike/kurs-vysshei-matematiki/76-privedenie-kvadratichnykh-form-k-kanonicheskomu-vidu

http://natalibrilenova.ru/kvadratichnyie-formyi/