Квадратная система линейных уравнений имеет единственное решение

Метод Крамера решения систем линейных уравнений

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения и возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

. (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

* ,

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

*

** .

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера


………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Применить метод Крамера самостоятельно, а затем посмотреть решения

Пример 4. Решить систему линейных уравнений:

.

Пример 5. Решить систему линейных уравнений методом Крамера:

.

К началу страницы

Пройти тест по теме Системы линейных уравнений

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

,

,

,

.

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Квадратная система линейных уравнений имеет единственное решение

Системой m линейных уравнений с n неизвестными называется система вида

где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

  1. Система может иметь единственное решение.
  2. Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
  3. И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Рассмотрим способы нахождения решений системы.

МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче AX=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A: . Поскольку A -1 A = E и EX = X, то получаем решение матричного уравнения в виде X = A -1 B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B.

Примеры. Решить системы уравнений.

Найдем матрицу обратную матрице A.

,

Таким образом, x = 3, y = – 1.

Решите матричное уравнение: XA+B=C, где

Выразим искомую матрицу X из заданного уравнения.

Найдем матрицу А -1 .

Решите матричное уравнение AX+B=C, где

Из уравнения получаем .

Следовательно,

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

.

Далее рассмотрим коэффициенты при x2:

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений

Решите систему уравнений при различных значениях параметра p:

Система имеет единственное решение, если Δ ≠ 0.

. Поэтому .

  1. При
  2. При p = 30 получаем систему уравнений которая не имеет решений.
  3. При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений x=y,y Î R.

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.

Вернувшись к системе уравнений, будем иметь

Выпишем расширенную матрицу системы и сведем ее к треугольному виду.

Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.

Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.

Вернемся к системе уравнений.

Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.

Таким образом, система имеет бесконечное множество решений.

Квадратная система линейных уравнений с определителем основной матрицы, отличным от нуля

Квадратная система линейных уравнений с определителем основной матрицы, отличным от нуля

  • Система квадратов следующего линейного уравнения Ненулевая основная матричная лемма. Давайте дадим квадрат Линейная система уравнений \ X \ + CL12X2 + … + CLinXn = С.10) \ X \ + an2X2 + … + appxn = bn Ненулевой определитель A главной матрицы A = ах шум ^ 22 ар2 С.11) Такие системы дополнительно включают в себя и найдите это решение.
  • Сначала докажите, что система C.10) может делать. Существует только одно решение (то есть, доказать единственность решения В.10) Предполагая его существование). Предположим, что существует n чисел xi, X2, …, xn. Подставляя эти числа в систему, C.10) весь баланс Выражение этой системы меняется на идентичность (то есть Второе решение системы C.10) xi, x2, …, xn).

Затем умножьте тождества C.10), алгебраические дополнения A \ j ^ A ^ j, …, Anj соответственно. Людмила Фирмаль

Сложите с j-ro элементом определителя столбца A матрицы C.11) Далее получаем идентификатор полученный таким образом ( Число j равно 1, 2, …, n) г = 1 aniAnj) = bnAnj. сумма произведений элементов в столбце r-ro соответствует Существующее алгебраическое дополнение элементов последовательности j-ro r = j для r f j и равна определителю A матрицы C.11) Получить из последнего равенства XjA = bAq + b2A2j + … + bnAnj. С.12) 8) гл. См.

Свойство 4 ° в подразделе 4 §2. 1. Отображать с помощью Aj (pi) (или проще с помощью Aj) Определитель, полученный из определителя А основной матрицы C.11) Заменить j-й столбец на пустой столбец-член B \, b, …, bn (если вы хотите сохранить все остальные столбцы без изменений Cov L).

Обратите внимание, что в правой части C.12 есть именно определители. Aj (pi) 9) это равенство принимает вид (J = 1, 2, …, n). С.13) Определитель Λ матрицы C.11) не равен нулю и равен Эквивалент C.13) Xj = ^ (i =! ‘2’¦ • ¦’ «) ¦ С.14) Таким образом, решение x1, x2, …, xn системы C.10 имеет вид Кроме определителя A основной матрицы C.11) Если la существует, это решение однозначно определяется формой Лами С.14).

Уравнение C.14) называется уравнением Крамера 10). Формула Крамера до сих пор была Предположение о существовании решения и доказательство его единственности нос Осталось доказать существование решения системы C.10). Для этого Благодаря Кронекеру — теоремы Капелли достаточно, чтобы доказать ее ранг Основная матрица С.11) равна рангу расширенной матрицы 11) «11 «22 «В 2р «Nl» n2 С.15)

Но это очевидно. Из-за отношения Φ0, основной ранг Матрица n является n, ранг расширенной матрицы, содержащей n строк C.15) Поскольку оно не может превышать число n, оно равно основному рангу Матрица. 9) Чтобы убедиться в этом, достаточно записать разложение детерминанта Aj (pi) элементом в i-м столбце. 10) Габриэль Крамер A704-1752) — швейцарский математик.

  • 11) Есть еще один способ доказать существование системного решения мы C.10), который состоит из проверки того, что числа x \, X2, •••, xn определены. Согласно уравнению Крамера C.14), они превращают все уравнения системы C.10) в тождества. Таким образом, линейная квадратная система полностью доказана Формула С.10)

Определитель основной матрицы отлично С нуля, имеет единственное решение, определяемое по форме Мул Крамер C.14). Утверждение, которое мы доказали, еще легче установить По-новому. Для этого замените (как в §1§1) Система C.10) Эквивалентное матричное уравнение AX = B.

Где A — основная матрица системы C.11, X и B — столбцы, С.16) X = X2 В = Людмила Фирмаль

Первый определяется, а второй дается. Поскольку определитель матрицы A не равен нулю, Обратная матрица от A до r (см. Подраздел 7 из 2 в главе 1). Предположим, что решение для системы C.10) существует. Столбец X является тождеством матричного уравнения С.16). Умножьте указанный тождество слева на обратное Рица А

1 A’1 (AX) = A’1 B С.17)

Из-за сочетания характеристик трех продуктов, Матрица (см. Подраздел 2 главы 1 § 1) и соотношение A-1A = E, E Матрица идентичности (см. Раздел 7§2Ch. 1), A (AX) = (от A до rA) X = EX = = X, так что берите из С.17) Х = А до 1В. С.18) Расширяя уравнение C.18), принимая во внимание форму обратной матрицы 12), Получите выражение Крамера для элемента в столбце X.

Следовательно, решение матричного уравнения С.16) имеет вид Если он присутствует, он однозначно определяется соотношением С.18)), Атомная формула Крамера. Легко убедиться, что столбец X определен с помощью: Фактически, C.18) является решением матричного уравнения C.16). 2) гл. См. П. 7 § 2 формулы А.41) 1.

Другими словами, если вы подставите это уравнение, оно превратится в тождество. в Фактически, если столбец X определяется уравнением C.18), AX = = A (от A до 1B) = (AA-> B = EB = B. Следовательно, если определитель D матрицы A отличен от нуля (то есть Существует, если эта матрица невырождена) Единственное решение матричного уравнения С.16) Мои отношения C.18) эквивалентны формуле Крамера.

Пример. Найти решение квадратной системы линейных уравнений коленный xi + 2×2 + Zzh3 + 4zh4 = 30, -xx + 2×2-Зж3 + 4ж4 = 10, % 2-X3 + W4 = 3 X \ + X2 + Xs + X4 = 10 Ненулевой определитель главной матрицы L = 1 -1 0 1 2 2 1 1 3 -3 -1 1 4 4 1 1 = -4. с того времени 30 -1 3 1 10 1 3 4 3 4 -1 1 1 1 = -4, к = Az = 1 2 30 4 №1 2 10 4 0 13 1 1 1 10 1 = -12, L4 = 1 1 0 1 1 1 0 1 30 10 3 10 2 2 1 1 — — 3 -3 -1 1 3 3 1 1 4 4 1 1 30 10 3 10 = -16

Во-вторых, благодаря формуле Крамера, Формат системы: x1-1, x

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://toehelp.ru/theory/math/lecture14/lecture14.html

http://lfirmal.com/kvadratnaya-sistema-lineynyh-uravneniy-s-opredelitelem-osnovnoy-matricy-otlichnym-ot-nulya/