Квадратная скобка в уравнении это

Скобки в математике: их виды и предназначение

В данной статье рассказывается о скобках в математике и рассматриваются виды и применения, термины и методы использования при решении или для описания материала. В заключение будут решены подобные примеры с подробными комментариями.

Основные виды скобок, обозначения, терминология

Для решения заданий в математике используются три вида скобок: ( ) , [ ] , < >. Реже встречаются скобки такого вида ] и [ , называемые обратными, или и > , то есть в виде уголка. Их применение всегда парное, то есть имеется открывающаяся и закрывающаяся скобка в любом выражении, тогда оно имеет смысл . скобки позволяют разграничить и определить последовательность действий.

Скобки для указания порядка выполнения действий

Основное предназначение скобок – указание порядка выполняемых действий. Тогда выражение может иметь одну или несколько пар круглых скобок. По правилу всегда выполняется первым действие в скобках, после чего умножение и деление, а позже сложение и вычитание.

Рассмотрим на примере заданное выражение. Если дан пример вида 5 + 3 — 2 , тогда очевидно, что действия выполняются последовательно. Когда это же выражение записывается со скобками, тогда их последовательность меняется. То есть при ( 5 + 3 ) — 2 первое действие выполняется в скобках. В данном случае изменений не будет. Если выражение будет записано в виде 5 + ( 3 — 2 ) , тогда в начале производятся вычисления в скобках, после чего сложение с числом 5 . На исходное значение в этом случае оно не повлияет.

Рассмотрим пример, который покажет, как при изменении положения скобок может измениться результат. Если дано выражение 5 + 2 · 4 , видно, что вначале выполняется умножение, после чего сложение. Когда выражение будет иметь вид ( 5 + 2 ) · 4 , то вначале выполнится действие в скобках, после чего произведется умножение. Результаты выражений будут отличаться.

Выражения могут содержать несколько пар скобок, тогда выполнения действий начинаются с первой. В выражении вида ( 4 + 5 · 2 ) − 0 , 5 : ( 7 − 2 ) : ( 2 + 1 + 12 ) видно, что первым делом выполняются действия в скобках, после чего деления, а в конце вычитание.

Существуют примеры, где имеются вложенные сложные скобки вида 4 · 6 — 3 + 8 : 2 и 5 · ( 1 + ( 8 — 2 · 3 + 5 ) — 2 ) ) — 4 . Тогда начинается выполнение действий с внутренних скобок. Далее производится продвижение к внешним.

Если имеется выражение 4 · 6 — 3 + 8 : 2 , тогда очевидно, что в первую очередь выполняются действия в скобках. Значит, следует отнять 3 от 6 , умножить на 4 и прибавить 8 . В конце следует разделить на 2 . Только так можно получить верный ответ.

На письме могут быть использованы скобки разных размеров. Это делается для удобства и возможности отличия одной пары от другой. Внешние скобки всегда большего размера, чем внутренние. То есть получаем выражение вида 5 — 1 : 2 + 1 2 + 3 — 1 3 · 2 · 3 — 4 . Редко встречается применение выделенных скобок ( 2 + 2 · ( 2 + ( 5 · 4 − 4 ) ) ) · ( 6 : 2 − 3 · 7 ) · ( 5 − 3 ) или применяют квадратные, например, [ 3 + 5 · ( 3 − 1 ) ] · 7 или фигурные < 5 + [ 7 − 12 : ( 8 − 5 ) : 3 ] + 7 − 2 >: [ 3 + 5 + 6 : ( 5 − 2 − 1 ) ] .

Перед тем, как приступить к решению, важно правильно определить порядок действий и разобрать все необходимые пары скобок. Для этого следует добавлять разные виды скобок или менять их цвет. Пометка скобки другим цветом удобна для решения, но занимает много времени, поэтому на практике чаще всего применяют круглые, фигурные и квадратные скобки.

Отрицательные числа в скобках

Если необходимо изобразить отрицательные числа, тогда применяют круглые скобки в выражении. Такая запись, как 5 + ( − 3 ) + ( − 2 ) · ( − 1 ) , 5 + — 2 3 , 2 5 7 — 5 + — 6 7 3 · ( — 2 ) · — 3 , 5 предназначена для того, чтобы упорядочить отрицательные числа в выражении.

Скобки не ставятся для отрицательного числа того, когда оно располагается в начале любого выражения или дроби. Если имеем пример вида − 5 · 4 + ( − 4 ) : 2 , то очевидно, что знак минуса перед 5 можно не заключать в скобки, а при 3 — 0 , 4 — 2 , 2 · 3 + 7 + 3 — 1 : 2 число 2 , 2 записано вначале, значит скобки также не нужны. Со скобками можно записать выражение ( − 5 ) · 4 + ( − 4 ) : 2 или 3 — 0 , 4 — 2 , 2 · 3 + 7 + 3 — 1 : 2 . Запись, где имеются скобки, считается более строгой.

Знак минуса может находиться не только перед числом, но и перед переменными, степенями, корнями, дробями, функциями, тогда их следует заключить в скобки. Это такие записи, как 5 · ( − x ) , 12 : ( − 22 ) , 5 · — 3 + 7 — 1 + 7 : — x 2 + 1 3 , 4 3 4 — — x + 2 x — 1 , 2 · ( — ( 3 + 2 · 4 ) , 5 · ( — log 3 2 ) — ( — 2 x 2 + 4 ) , sin x · ( — cos 2 x ) + 1

Скобки для выражений, с которыми выполняются действия

Использование круглых скобок связано с указанием в выражении действий, где имеется возведение в степень, взятие производной, функции. Они позволяют упорядочивать выражения для удобства дальнейшего решения.

Скобки в выражениях со степенями

Выражение со степенью не всегда следует заключать в скобки, так как степень располагается надстрочно. Если имеется запись вида 2 x + 3 , то очевидно, что х + 3 – это показатель степени. Когда степень записывается в виде знака ^, тогда остальное выражение следует записывать с добавлением скобок, то есть 2 ^ ( x + 3 ) . Если записать это же выражение без скобок, то получится совсем другое выражение. При 2 ^ x + 3 на выходе получим 2 x + 3 .

Основание степени не нуждается в скобках. Поэтому запись принимает вид 0 3 , 5 x 2 + 5 , y 0 , 5 . Если в основании имеется дробное число, тогда можно использовать круглые скобки. Получаем выражения вида ( 0 , 75 ) 2 , 2 2 3 32 + 1 , ( 3 · x + 2 · y ) — 3 , log 2 x — 2 — 1 2 x — 1 .

Если выражение основания степени не взять в скобки, тогда показатель может относиться ко всему выражению, что повлечет за собой неправильное решение. Когда имеется выражение вида x 2 + y , а — 2 – это его степень, то запись примет вид ( x 2 + y ) — 2 . При отсутствии скобок выражение приняло бы вид x 2 + y — 2 , что является совершенно другим выражением.

Если основанием степени является логарифм или тригонометрическая функция с целым показателем, тогда запись приобретает вид sin , cos , t g , c t g , a r c sin , a r c cos , a r c t g , a r c c t g , log , ln или l g . При записи выражения вида sin 2 x , a r c cos 3 y , ln 5 e и log 5 2 x видим, что скобки перед функциями не меняют значения всего выражения, то есть они равноценны. Получаем записи вида ( sin x ) 2 , ( a r c cos y ) 3 , ( ln e ) 5 и log 5 x 2 . Допустимо опущение скобок.

Скобки в выражениях с корнями

Использование скобок в подкоренном выражении бессмысленно, так как выражение вида x + 1 и x + 1 являются равнозначными. Скобки не дадут изменений при решении.

Скобки в выражениях с тригонометрическими функциями

Если имеются отрицательные выражения у функций типа синус, косинус, тангенс, котангенс, арксинус, арккосинус, арктангенс, арккотангенс, тогда необходимо использовать круглые скобки. Это позволит правильно определить принадлежность выражения к имеющейся функции. То есть получим записи вида sin ( − 5 ) , cos ( x + 2 ) , a r c t g 1 x — 2 2 3 .

При записи sin , cos , t g , c t g , a r c sin , a r c cos , a r c t g и a r c c t g при имеющемся числе скобки не используют. Когда в записи присутствует выражение, тогда имеет смысл их поставить. То есть sin π 3 , t g x + π 2 , a r c sin x 2 , a r c t g 3 3 с корнями и степенями, cos x 2 — 1 , a r c t g 3 2 , c t g x + 1 — 3 и подобные выражения.

Если в выражении содержатся кратные углы типа х , 2 х , 3 х и так далее, скобки опускаются. Разрешено записывать в виде sin 2 x , c t g 7 x , cos 3 α . Во избежание двусмысленности скобки можно добавить в выражение. Тогда получаем запись вида sin ( 2 · x ) : 2 вместо sin 2 · x : 2 .

Скобки в выражениях с логарифмами

Чаще всего все выражения логарифмической функции заключаются в скобки для дальнейшего правильного решения. То есть получаем ln ( e − 1 + e 1 ) , log 3 ( x 2 + 3 · x + 7 ) , l g ( ( x + 1 ) · ( x − 2 ) ) . Опущение скобок разрешено в том случае, когда однозначно понятно, к какому выражению относится сам логарифм. Если есть дробь, корень или функция можно записывать выражения в виде log 2 x 5 , l g x — 5 , ln 5 · x — 5 3 — 5 .

Скобки в пределах

При имеющихся пределах используют скобки для представления выражения самого предела. То есть при суммах, произведениях, частных или разностях принято записывать выражения в скобках. Получаем, что lim n → 5 1 n + n — 2 и lim x → 0 x + 5 · x — 3 x — 1 x + x + 1 : x + 2 x 2 + 3 . Опущение скобок предполагается, когда имеется простая дробь или очевидно, к какому выражению относится знак. Например, lim x → ∞ 1 x или lim x → 0 ( 1 + x ) 1 x .

Скобки и производная

При нахождении производной часто можно встретить применение круглых скобок. Если имеется сложное выражение, тогда вся запись берется в скобки . Например, ( x + 1 ) ‘ или sin x x — x + 1 .

Подынтегральные выражения в скобках

Если необходимо проинтегрировать выражение, то следует записать его в круглых скобках. Тогда пример примет вид ∫ ( x 2 + 3 x ) d x , ∫ — 1 1 ( sin 2 x — 3 ) d x , ∭ V ( 3 x y + z ) d x d y d z .

Скобки, отделяющие аргумент функции

При наличии функции чаще всего применяются круглые скобки для их обозначения. Когда дана функция f с переменной х , тогда запись принимает вид f ( x ) . Если имеются несколько аргументов функций, то такая функция получит вид F ( x , y , z , t ) .

Скобки в периодических десятичных дробях

Использование периода обусловлено применением скобок при записи. Сам период десятичной дроби заключается в скобки. Если дана десятинная дробь вида 0 , 232323 … тогда очевидно, что 2 и 3 мы заключаем в круглые скобки. Запись приобретает вид 0 , ( 23 ) . Это характерно для любой записи периодической дроби.

Скобки для обозначения числовых промежутков

Для того, чтобы изобразить числовые промежутки применяют скобки четырех видов: ( ) , ( ] , [ ) и [ ] . В скобках прописываются промежутки, в каких функция существует, то есть имеет решение. Круглая скобка означает, что число не входит в область определения, квадратная – входит. При наличии бесконечности принято изображать круглую скобку.

То есть при изображении промежутков получим, что ( 0 , 5 ) , [ − 0 , 5 , 12 ) , — 10 1 2 , — 5 2 3 , [ 5 , 700 ] , ( − ∞ , − 4 ] , ( − 3 , + ∞ ) , ( − ∞ , + ∞ ) . Не вся литература одинаково использует скобки. Есть случаи, когда можно увидеть запись такого вида ] 0 , 1 [ , что означает ( 0 , 1 ) или [ 0 , 1 [ , что значит [ 0 , 1 ) , причем смысл выражения не меняется.

Обозначения систем и совокупностей уравнений и неравенств

Системы уравнений, неравенств принято записывать при помощи фигурной скобки вида < . Это означает, что все неравенства или уравнения объединены этой скобкой. Рассмотрим на примере использования скобки. Система уравнений вида x 2 - 1 = 0 x 2 + x - 2 = 0 или неравенства с двумя переменными x 2 - y >0 3 x + 2 y ≤ 3 , cos x 1 2 x + π 3 = 0 2 x 2 — 4 ≥ 5 -система, состоящая из двух уравнений и одного неравенства.

Использование фигурных скобок относится к изображению пересечения множеств. При решении системы с фигурной скобкой фактически приходим к пересечению заданных уравнений. Квадратная скобка служит для объединения.

Уравнения и неравенства обозначаются [ скобкой в том случае, если необходимо изобразить совокупность. Тогда получаем примеры вида ( x — 1 ) ( x + 7 ) = 0 x — 2 = 12 + x 2 — x + 3 и x > 2 x — 5 y = 7 2 x + 3 y ≥ 1

Можно встретить выражения, где имеются и система и совокупность:

x ≥ 5 x 3 x > 4 , 5

Фигурная скобка для обозначения кусочной функции

Кусочная функция изображается при помощи одиночной фигурной скобки, где имеются формулы, определяющие функцию, содержащие необходимые промежутки. Посмотрим на примере формулы с содержанием промежутков типа x = x , x ≥ 0 — x , x 0 , где имеется кусочная функция.

Скобки для указания координат точки

Для того, чтобы изобразить координатные точки в виде промежутков, используют круглые скобки. Они могут быть расположены как на координатной прямой, так и в прямоугольной системе координат или n-мерном пространстве.

Когда координата записывается как А ( 1 ) , то означает, что точка А имеет координату со значением 1 , тогда Q ( x , y , z ) говорит о том, что точка Q содержит координаты x , y , z .

Скобки для перечисления элементов множества

Множества задаются при помощи перечисления элементов, входящих в его область. Это выполняется при помощи фигурных скобок, где сами элементы прописываются через запятую. Запись выглядит таким образом А = < 1 , 2 , 3 , 4 >. Видно, что множество состоит из значений, перечисленных в скобках.

Скобки и координаты векторов

При рассмотрении векторов в системе координат используется понятие координат вектора. То есть при обозначении используют координаты, которые записаны в виде перечисления в скобках.

Учебники предлагают два вида обозначения: a → 0 ; — 3 или a → 0 ; — 3 . Обе записи равнозначны и имеют значение координат 0 , — 3 . При изображении в трехмерном пространстве добавляется еще одна координата. Тогда запись выглядит так: A B → 0 , — 3 , 2 3 или A B → 0 , — 3 , 2 3 .

Обозначение координат может быть как со значком вектора на самом векторе, так и без. Но запись координат производится через запятую в виде перечисления. Запись принимает вид a = ( 2 , 4 , − 2 , 6 , 1 2 ) , где вектор обозначается в пятимерном пространстве. Реже можно увидеть обозначение двумерного пространства в виде a = 3 — 7

Скобки для указания элементов матриц

Частое применение скобок предусмотрено в матрицах. Все элементы фиксируются при помощи круглых скобок вида A = 4 2 3 — 3 0 0 12 .

Реже можно увидеть использование квадратных скобок.
Тогда матрица приобретает вид A = 4 2 3 — 3 0 0 12 .

Как репетитор по математике оформляет объединение систем

Системы уравнений и неравенств входили в состав выпускных и вступительных экзаменов по математике во все времена. Даже если в экзаменационном варианте нет прямого задания на решение системы, то существует достаточно высокая вероятность ее появления процессе решения других задач. Репетитор по математике обязан это учитывать. Привести к системам могут задачи на модули, на логарифмы, на графики и даже на синусы с косинусы. Несмотря на то, что подготовка к ЕГЭ по математике нередко сводится к натаскиванию на решение однотипных номеров части «В», не стоит полностью отказываться от тренировки навыков поиска пересечения (объединения) ответов разных объектов. Хотя бы на элементарном уровне. Какими приемами репетитор по математике обеспечивает оптимальную работу ученика с системами? Какая техника оформления систем была бы самой удобной и продуктивной?

К сожалению, школьные учителя и даже некоторые профессиональные репетиторы требуют от детей (уже в 8 классе) оформление систем по принципу «все в одном», упаковывая содержащиеся в них неравенства в единый объект согласно строгим правилам проведения равносильных преобразований. Широко применяются квадратные и фигурные скобки, причем часто в весьма сложном сочетании. Мой опыт репетиторской работы свидетельствует о том, что дети с огромнейшим трудом воспринимают, казалось бы, несложные для математиков логические конструкции с конъюнкциями и дизъюнкциями. Примерно 60-70% всех школьников с трудом припоминают (или не знают вообще) чем отличается квадратная скобка от линейной. А среди тех, кто приходит к репетитору по математике, этот процент повышается в среднем до 90-95%.

Но, тем не менее, для обозначения объединения, некоторые школьные преподаватели все равно используют квадратные скобки. Видимо по привычке. При таком раскладе репетитор по математике оказывается в крайне сложном положении, ибо уровень ученика часто не позволяет осознать сложные логические сочетания. Я не сторонник любой ценой следовать школьным стандартам и часто полностью отказываюсь от постановки квадратных скобок. Без них проще. Особенно когда на носу подготовка к ЕГЭ. Если все же репетитор математики вынужден принимать школьные правила, он мог бы это сделать следующим образом:

Когда репетитор по математике вводит квадратную скобку?

К пониманию разницы между скобками лучше всего подводить ученика постепенно, начиная с 8 класса, когда изучается тема «неравенства». В решении самих неравенств восьмиклассники используют понятие «пересечение ответов» . Почему бы репетитору по математике не показать что такое «объединение ответов»? Задачи на объединение присутствуют в учебнике Макарычева, но они ограничиваются операцияями с уже сформированными промежутками. Это не совсем то, что нужно. Вот пример, на котором репетитор по математике мог бы объяснить назначение квадратной скобки:

Как видите, используется самое простое сочетание. Скобку лучше всего ввести после того, как ученик поймет суть задания. А она заключается в том, чтобы подобрать числа, обеспечивающие выполнение хотя бы одного неравенства (я употребляю общий термин: «условие»). Фразу «хотя бы одного» репетитор по математике сразу же меняет на фразу «или одно или другое». Процент учеников, правильно нашедших репетитору ответ, оказывается не таким и уж низким. Половина детей схватывают суть задания сразу же. Другим нужно показывать, как проверяется наугад взятое число (главное не объяснять только словами).

Данный номер рассматривается репетитором сразу после примера на совокупность, то есть на поиск числа, обеспечивающего выполнение каждого условия:

К сожалению, родители редко приглашают репетитора по математике в 8 классе и подготовкой к ЕГЭ занимаются только с 10 или с 11 класса. В этом случае репетитору приходится объяснять оформление объединения по формальному признаку фигурной скобки: если для проверки произвольно взятого числа достаточно проверить верность одного из нескольких условий (неравенств, уравнений или их систем), то проверяемые объекты можно заключить в квадратную скобку. Корректируя общую формулировку, репетитор по математике вставляет в нее союз «или». Например, для того, чтобы число x было корнем уравнения необходимо чтобы или первый множитель равнялся нулю, или второй. Преподаватель отдельно акцентирует внимание ученика на участии «или» и в случае его уместного употребления разрешает заключить объекты в квадратную скобку.

Если репетитор математики примет строгое оформление, он усложнит ученику одновременно и понимание и практическую работу. Школьные учителя берут за образец оформление систем в задачниках, в которых решения излагаются кратко. Из-за пропусков некоторых его частей удается компактно расписать все равносильные переходы, сохраняя целостность объекта. Репетитору по математике данная методика не подходит категорически. Почему? Ученики начинают вырывать по отдельности неравенства из огромной системы через весьма приличные промежутки времени. Переключение внимания на частные операции сбивает школьников с главного направления. Они забывают что именно им надо пересекать, а что объединять. Путаница возникает страшная. Хорошо, если репетитор по математике рядом и сможет подсказать. А что делать на ЕГЭ? Вряд ли стоит рисковать. Техника действий должна быть максимально прозрачной и удобной в практическом смысле.

Принимая квадратную скобку, репетитор по математике усложняет еще и сортировку решенного. Приходится оформлять отдельные неравенства в колонку (одно под другим) и запоминать какое именно решено, а какое еще нет. Если сами решения длинные, то ученику может не хватить страницы и придется ее переворачивать. Рассеивание внимания при этом гарантировано.

Может ли репетитор по математике обойтись без квадратной скобки

Да, вполне. Для этого применяются стрелочный эквивалент. Например:

Чаще всего в объединение попадают две системы (если больше — лучше использовать иные методы изначально). В нашем случае одна из систем решается в левой части тетрадного листа, а другая в правой. Репетитор по математике разделяет квадратную скобку на две совокупности отдельных систем. На мой взгляд, это самая удобная форма для практической работы ученика. Почему? Те ответы, которые нужно пересечь, распределены по колонкам, при этом операции в левой и в правой колонке проводятся локально и не перемешиваются. Слева — свое пересечение, справа — свое. Очень удобно. Под каждой системой – решение. Системы не нужно вырывать из «квадратной скобки», не нужно переписывать. Финальные ответы, которые репетитор по математике и ученик получают слева и справа «сваливаются в общий ответ» без какой-либо коррекции и пересечения.

Исключение составляют случаи, когда промежутки имеют общую часть. Однако практика показывает, что даже если репетитор по математике забудет напомнить о «склеивании частей», то большинство учеников догадаются до него сами.

Преимущество стрелок для запоминания:
Когда ученик разделяет тетрадный лист на две части, то находясь на любом этапе решения по левой колонке, он помнит о том, что предстоит еще заполнить и правую часть. Это очень важно. Если вы репетитр, то наверняка знаете, что школьники часто забывают разобрать какой-нибуь случай или решить какое-нибдуь неравенство из системы.

Сложность работы с объединением и пересечением носит часто чисто технический характер и связана с проблемой механики решений, то есть запоминанием и сортировкой обрабатываемой информации. При подготовке к ЕГЭ по математике важно получить навык автоматического выполнения операций. Поэтому репетитору по математике крайне необходимо использовать в работе простые и удобные методы, каким является прием стрелочного разделения. Если потребуется объединить три или более системы, репетитор по математике может взять лист формата А4, развернуть его в длину и аккуратно решить задание распределяя системы по нескольким колонкам. Такой подход к оформлению позволит ученику четко разделить и запомнить логическую структуру объекта.

Репетитор по математике, Колпаков А.Н. Москва.

Квадратные скобки в математике — значение, основные символы и примеры

Общая характеристика

Главная задача знаков — описание этапов осуществляемых действий. Математическое уравнение или выражение имеет одиночную пару квадратных, фигурных и других скобок, а также может использовать их некоторое количество.

Значение и разновидности

Скобки — это парные знаки, используемые во всевозможных областях. Чтобы правильно выстроить фразу в русском языке, для понимания смысла текста в предложении они употребляются как знаки препинания. С начальных классов школы изучают основы этих знаков.

В расчетах первая из скобок считается открывающей, а вторая — замыкающей. Оба знака соответствуют друг другу, но также используются те, в которых открытие или закрытие не различается (косые /…/, прямые скобки |…|, двойные прямые ||…||. Раскрывать значение можно чаще всего в математике, физике, химии и остальных науках для указания важности выполнения операции в формулах. На компьютерной клавиатуре представлены все виды знаков препинания.

Разновидности:

  • Круглые ().
  • Квадратные [ ].
  • Фигурные < >.
  • Угловые ⟨ ⟩ ( в ASCII-текстах).

Открытие круглых () произошло в 1556 году для подкоренного выражения. По правилу первым выполняется действие внутри знака, затем произведение или определение частного (деление), а в конце — суммирование и разница.

В Microsoft word, Excel включена электронная конфигурация этих знаков. Часто используемые виды скобок, следующие: (), [ ], < >(), [ ], < >. Также встречаются двойные, называемые обратными (]] и [ [) или > в виде уголка. Их использование является двойственным — с открывающейся и замыкающей скобочкой.

Основные цели квадратной скобки в математике:

  • Взятие целой части числового значения.
  • Округление до близкого знака.
  • Возведение в степень, взятие производной или подсчёт подинтегрального выражения.
  • Приоритет операций. Примером может быть следующий способ: [(5+6)*2]3.

Другие варианты расчета:

  • Векторное произведение — с = [a, b] = [a*b] = a*b.
  • Закрытие сегмента [1;2] означает, что в множество включены цифры 1 и 2.
  • Коммутатор [А, В = [А, В].
  • Заменяют круглые скобки при записи матриц по правилам.
  • Одна [ объединяет несколько уравнений или неравенств.
  • Нотация Айверсона.

Квадратные скобки в математике обозначают, что действие выполняется последовательно. Эти знаки позволяют разграничить операции.

Треугольные актуальны в теории групп. Правило записи ⟨ a ⟩ n характеризует циклическую группу порядка n, сформированную элементом a.

Круглые (операторные) () используются в математике для описания первостепенности действий. Например, (1 +5)*3 означает, что нужно сначала сложить 1 и 5, а затем полученную величину перемножить на 3. Наряду с квадратными, используются для записи разных компонент векторов, матриц и коэффициентов.

На уроке математики преподаватель объясняет, как раскрыть скобки в уравнении для последующего решения. Фигурная одинарная < встречается при решении систем уравнений, обозначает пересечение данных, а [[ используется при их слиянии.

Одинарные или двойные выражения

Употребление [] происходит реже. Одно уравнение со скобками объединяет несколько значений или неравенств различных размеров. Для решения совокупности нужно выполнить любое условие. Конец, завершение действия замыкает закрывающий знак.

В персональных компьютерах, ноутбуках, нетбуках встроена кодировка Юникод, закрепленная не за левыми или правыми объединяющими знаками, а за открывающими и замыкающими, поэтому при воспроизведении печатного текста со скобочками в режиме «справа налево» каждый знак меняет внешнее направление на обратное.

Квадратные скобки в уравнении означают, что установлен порядок действий, задаются границы промежутков и необходимость выполнения действия над выражением. Двойные квадратные скобки необходимы для записи выражений наряду с круглыми для рационального порядка действий.

По правилам интервал [−a;+a] записывается в виде нестрогого неравенства −a≤x≤a, означающего, что x находится на промежутке от −a до a включительно.

Также используются в математике как круглые, так и прямые знаки, означающие, что на конце отрезка, рядом с которым имеется круглая скобка, равенство строгое, а на том, где скобка квадратная — нестрогое. Интервал (−5;5] иначе записывается неравенством $5.

В середине парного знака с отделяющей точкой или запятой указываются два числа — наименьшее, затем большее, ограничивающие интервал. Круглая скобочка, прилегающая к цифре, означает невключение числа в промежуток, а квадратная — добавление.

В некоторых учебных пособиях для вузов встречаются расшифровки числовых интервалов, в которых вместо круглой скобочки (применяется обратная квадратная скобка ], и наоборот. В обозначениях запись ]0, 1[ равносильна (0, 1).

Открытая квадратная скобка (символ [) значит, что совокупность представляет систему уравнений разных размеров, для которых справедливы все множества решений для каждого уравнения, входящего в общее задание. Например, [x+11=2yy2−12=0

Прежде чем решать задачу или выполнять задание, нужно правильно определить принципы действий. В некоторых случаях скобочки могут быть не нужны, а иногда их обязательно нужно поставить.

Прочие знаки

Для математических, алгебраических и прочих расчетов важно знать различие обобщающих знаков. От правильности вычислений зависит итоговый результат.

Удобство записи системы уравнений

Применение фигурных знаков относится к представлению совмещения множеств. При решении системы с фигурной скобкой уравнения пересекаются, а [] объединяет их.


источники:

http://ankolpakov.ru/kak-repetitor-po-matematike-oformlyaet-peresechenie-sistem/

http://nauka.club/matematika/kvadratny%D0%B5-skobki.html