Квадратное уравнение с мнимыми корнями пример

Квадратное уравнение с комплексными корнями

Вы будете перенаправлены на Автор24

Рассмотрим решение уравнений с комплексными корнями и коэффициентами.

Двучленным называется уравнение вида $x^ =A$.

Рассмотрим три случая:

Решить уравнение: $x^ <3>=8$.

Так как $A>0$, то $x_ =\sqrt[<3>] <8>\cdot \left(\cos \frac<2k\pi > <3>+i\cdot \sin \frac<2k\pi > <3>\right),\, \, \, k=0. 2$.

При $k=0$ получаем $x_ <0>=\sqrt[<3>] <8>\cdot \left(\cos 0+i\cdot \sin 0\right)=\sqrt[<3>] <8>=2$.

При $k=1$ получаем

\[x_ <1>=\sqrt[<3>] <8>\cdot \left(\cos \frac<2\pi > <3>+i\cdot \sin \frac<2\pi > <3>\right)=\sqrt[<3>] <8>\cdot (-\frac<1> <2>+\frac <\sqrt<3>> <2>\cdot i)=2\cdot (-\frac<1> <2>+\frac <\sqrt<3>> <2>\cdot i)=-1+\sqrt <3>\cdot i.\]

При $k=2$ получаем

\[x_ <2>=\sqrt[<3>] <8>\cdot \left(\cos \frac<4\pi > <3>+i\cdot \sin \frac<4\pi > <3>\right)=\sqrt[<3>] <8>\cdot (-\frac<1> <2>-\frac <\sqrt<3>> <2>\cdot i)=2\cdot (-\frac<1> <2>-\frac <\sqrt<3>> <2>\cdot i)=-1-\sqrt <3>\cdot i.\]

Решить уравнение: $x^ <3>=1+i$.

Готовые работы на аналогичную тему

Так как $A$ — комплексное число, то

Тригонометрическая форма записи некоторого комплексного числа имеет вид $z=r(\cos \varphi +i\cdot \sin \varphi )$.

По условию $a=1,b=1$.

Вычислим модуль исходного комплексного числа:

Вычислим аргумент исходного комплексного числа:

\[\varphi =\arg z=arctg\frac<1> <1>=arctg1=\frac<\pi > <4>\]

Подставим полученные значения и получим:

Уравнение перепишем в виде:

При $k=0$ получаем $x_ <0>=\sqrt[<3>] <\sqrt<2>> \cdot \left(\cos \frac<\pi /4> <3>+i\cdot \sin \frac<\pi /4> <3>\right)=\sqrt[<3>] <\sqrt<2>> \cdot \left(\cos \frac<\pi > <12>+i\cdot \sin \frac<\pi > <12>\right)=\sqrt[<6>] <2>\cdot \left(\cos \frac<\pi > <12>+i\cdot \sin \frac<\pi > <12>\right)$.

При $k=1$ получаем

При $k=2$ получаем

Квадратным называется уравнение вида $ax^ <2>+bx+c=0$, где коэффициенты $a,b,c$ в общем случае являются некоторыми комплексными числами.

Решение квадратного уравнения находится с помощью дискриминанта $D=b^ <2>-4ac$, при этом

В случае, когда дискриминант является отрицательным числом, корни данного уравнения являются комплексными числами.

Решить уравнение $x^ <2>+2x+5=0$ и изобразить корни на плоскости.

\[D=2^ <2>-4\cdot 1\cdot 5=4-20=-16.\]

Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 1.

В случае, когда уравнение имеет комплексные корни, они являются комплексно-сопряженными числами.

Комплексное число вида $\overline=a-bi$ называется числом комплексно-сопряженным для $z=a+bi$.

Известно, что если $x_ <1,2>$ являются корнями квадратного уравнения $ax^ <2>+bx+c=0$, то данное уравнение можно переписать в виде $(x-x_ <1>)(x-x_ <2>)=0$. В общем случае $x_ <1,2>$ являются комплексными корнями.

Зная корни уравнения $x_ <1,2>=1\pm 2i$, записать исходное уравнение.

Запишем уравнение следующим образом:

\[x^ <2>-(1-2i)\cdot x-x\cdot (1+2i)+(1-2i)\cdot (1+2i)=0\] \[x^ <2>-x+2i\cdot x-x-2i\cdot x+1-4i^ <2>=0\] \[x^ <2>-2x+1+4=0\] \[x^ <2>-2x+5=0\]

Следовательно, $x^ <2>-2x+5=0$ — искомое уравнение.

Рассмотрим квадратное уравнение с комплексными коэффициентами.

Решить уравнение: $z^ <2>+(1-2i)\cdot z-(1+i)=0$ и изобразить корни на плоскости.

Так как $D>0$, уравнение имеет два корня:

Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 2.

В случае, когда уравнение имеет комплексные коэффициенты, его корни не обязательно являются комплексно-сопряженными числами.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Дата последнего обновления статьи: 13 11 2021 Автор этой статьи

Сергей Евгеньевич Грамотинский

Эксперт по предмету «Математика»

Работаем по будням с 10:00 до 20:00 по Мск

. и многие другие.
Успешной учебы! Будем рады вам помочь!

Квадратное уравнение с мнимыми корнями пример

Алгебраическое уравнение 2-й степени иначе называется квадратным. Наиболее общий вид квадратного уравнения с одним неизвестным есть

где a, b, c — данные числа или буквенные выражения, содержащие известные величины (причем коэффициент а не может быть равен нулю, иначе уравнение будет не квадратным, а 1-й степени).. Разделив обе его части на a, мы получим уравнение вида

(p = b/a; q = c/a).
Квадратное уравнение такого вида называется приведенным; уравнение ах 2 + bx + c = 0 (где а ≠ 0), называется неприведенным. Если одна из величин b, с или обе вместе равны нулю, то квадратное уравнение называется неполным; если и b и с не равны нулю, квадратное уравнение называется полным.

Примеры
3x 2 + 8x -5 = 0 – полное неприведенное квадратное уравнение;
3x 2 – 5 = 0 – неполное неприведенное квадратное уравнение;
x 2 – ax = 0 – неполное приведенное квадратное уравнение;
x 2 – 12x +7 = 0 – полное приведенное квадратное уравнение.

Неполное квадратное уравнение вида

x 2 = m (m – известная величина)

является самым простым типом квадратного уравнения и вместе с тем очерь важным, так как к нему приводится решение всякого квадратного уравнения. Решение этого уравнения имеет вид

Возможны три случая:

1) Если m = 0, то и x = 0.

2) Если m – положительное число, то его квадратный корень может иметь два значения: одно положительное, другое отрицательное. Абсолютные величины этих значений одинаковы. Например, уравнение x 2 = 9 удовлетворяется значением х = + 3 и х = — 3. Другими словами, x имеет два значения: +3 и — 3. Часто это выражают тем, что перед радикалом ставят два знака – плюс и минус.

При таком написании подразумевается, что выражение обозначает общую абсолютную величину-двух значений корня; в нашем примере — число 3. Величина может быть иррациональным чиcлом. Заметим, что и само m может быть иррациональным числом. Например, пусть требуется решить уравнение

(геометрически это означает найти длину стороны квадрата равного по площади кругу с радиусом 1). Его корень x = √π.

3) Если m — отрицательное число, то уравнение х 2 = m (например, х 2 = — 9) не может иметь никакого положительного и никакого отрицательного корня: ведь и положительное и отрицательное число по возведении в квадрат дает положительное число. Таким образом, можно сказать, что уравнение х 2 = — 9 не имеет решений, т.е. число не существует.

Но с таким же основанием до введения отрицательных чисел можно было говорить, что и уравнение 2x + 6 = 4 не имеет решений. Однако после введения отрицательных чисел это уравнение стало разрешимым. Точно так же уравнение х 2 = — 9, не имеющее решений среди положительных и отрицательных чисел, становится разрешимым после введения новых величин — квадратных корней из отрицательных чисел. Эти величины были впервые введены итальянским математиком Кардано в середине 16 века в связи с решением кубического уравнения. Кардано назвал эти числа «софистическими» (т. е. «мудреными»). Декарт в 30-х годах 17 века ввел наименование «мнимые числа», которое, к сожалению, удерживается до сих пор. В противоположность мнимым числам прежде известные числа (положительные и отрицательные, в том числе иррациональные) стали называть действительными или вещественными. Сумма действительного и мнимого числа называется комплексным числом*.Часто и комплексные числа называют мнимыми.

Введя в рассмотрение мнимые числа, можно сказать, что неполное квадратное уравнение x 2 = m всегда имеет два корня. Если m > 0, эти корни действительны, они имеют одинаковую абсолютную величину и различны по знаку. Если m = 0, оба они равны нулю; если m *Этот термин введен Гауссом в 1831 г. Слово «комплексный» означает в переводе «совокупный».

Числа. Извлечение корней из комплексных чисел. Квадратное уравнение с комплексными корнями.

Рассматривать будем на таком примере:

Если говорить о действительных числах, то, вы знаете, что корень из отрицательного числа нельзя извлекать. Однако в комплексных числах можно. Если конкретнее, 2 корня:

Выполним проверку того, что эти корни и права оказываются решением уравнения:

Что и требовалось доказать.

Зачастую используют сокращенную запись, корни записывают в одну строчку в таком виде: .

Такие корни являются сопряженными комплексными корнями.

Теперь вы знаете как можно извлечь квадратный корень из отрицательного числа. Приведем еще несколько примеров:

, ,

,

,

В каждом случае получаем 2 сопряженных комплексных корня.

Решим квадратное уравнение .

Первым шагом определим дискриминант уравнения:

В нашем случае дискриминант оказался отрицательным, и в случае с действительными числами у уравнения нет решений, но у нас вариант с комплексными числами, поэтому можем продолжать решение:

Как известно из формул дискриминанта у нас образуется 2 корня:

– сопряженные комплексные корни

Т.о., у уравнения есть 2 сопряженных комплексных корня:

,

Теперь можно решить любое квадратное уравнение!

У любого уравнения с многочленом n-ой степени есть ровно n корней, некоторые из них могут быть комплексными.

Как извлечь корень из произвольного комплексного числа?

Рассмотрим уравнение z n = w, либо, записав в другом виде: . Здесь n может принимать всякое натуральное значение, которое больше 1-цы.

В частности, при n = 2 получаем квадратный корень .

У уравнения типа есть ровно n корней ­z0, z1, z2, … zn-1, которые можно вычислить с помощью формулы:

,

где – это модуль комплексного числа w,

φ – его аргумент,

а параметр k принимает значения: .

Найдем корни уравнения: .

Перепишем уравнение как: .

В этом примере , , поэтому у уравнения будет 2 корня: z0 и z1. Детализируем общую формулу:

, .

Далее найдем модуль и аргумент комплексного числа :

Число w находится в 1-ой четверти, значит:

Помним, что определяя тригонометрическую форму комплексного числа лучше делать чертеж.

Детализируем еще немного общую формулу:

, .

Так подобно расписывать не обязательно. Здесь мы это сделали, что бы было ясно откуда что образовалось.

Подставляем в формулу значение k = 0 и получаем 1-й корень:

.

Подставляем в формулу значение k = 1 и получаем 2-й корень:

.

Ответ: ,

Если необходимо, корни, которые мы получили можно перевести обратно в алгебраическую форму.

Часто вычисленные корни нужно изобразить геометрически:

Как выполнить чертеж?

Для начала на калькуляторе вычисляем, чему равен модуль корней и чертим с помощью циркуля окружность этого радиуса. Все корни будем откладывать на данной окружности.

Далее берем аргумент 1-го корня и вычисляем, чему равен угол в градусах:

.

Отмеряем транспортиром 45° и ставим на чертеже точку z0.

Берем аргумент 2-го корня и переводим его тоже в градусы: . Отмеряем транспортиром 165° и ставим на чертеже точку z1.

По этому же алгоритму ставим точку z2.

Видно, что корни располагаются геометрически правильно с интервалом между радиус-векторами. Чертеж обязательно делать при помощи транспортира.


источники:

http://www.maths.yfa1.ru/algebra.php?id=28

http://www.calc.ru/Chisla-Izvlecheniye-Korney-Iz-Kompleksnykh-Chisel-Kvadratnoy.html