Квадратные рациональные уравнения как решать

Рациональные уравнения. Семь типов рациональных уравнений, сводящихся к квадратным

В этой статье я покажу вам алгоритмы решения семи типов рациональных уравнений, которые с помощью замены переменных сводятся к квадратным. В большинстве случаев преобразования, которые приводят к замене, весьма нетривиальны, и самостоятельно о них догадаться достаточно трудно.

Для каждого типа уравнений я объясню, как в нем делать замену переменной, а затем в соответствующем видеоуроке покажу подробное решение.

У вас есть возможность продолжить решение уравнений самостоятельно, а затем сверить свое решение с видеоуроком.

1 . (x-1)(x-7)(x-4)(x+2)=40

Заметим, что в левой части уравнения стоит произведение четырех скобок, а в правой — число.

1. Сгруппируем скобки по две так, чтобы сумма свободных членов была одинаковой.

2. Перемножим их.

3. Введем замену переменной.

В нашем уравнении сгруппируем первую скобку с третьей, а вторую с четвертой,так как (-1)+(-4)=(-7)+2:

В этом месте замена переменной становится очевидной:

Получаем уравнение

Ответ:

  • 2 .

    Уравнение этого типа похоже на предыдущее с одним отличием: в правой части уравнения стоит произведение числа на . И решается оно совсем по-другому:

    1. Группируем скобки по две так, чтобы произведение свободных членов было одинаковым.

    2. Перемножаем каждую пару скобок.

    3. Из каждого множителя выносим за скобку х.

    4. Делим обе части уравнения на .

    5. Вводим замену переменной.

    В этом уравнении сгруппируем первую скобку с четвертой, а вторую с третьей, так как :

    Заметим, что в каждой скобке коэффициент при и свободный член одинаковые. Вынесем из каждой скобки множитель :

    Так как х=0 не является корнем исходного уравнения, разделим обе части уравнения на . Получим:

    Теперь можем ввести замену переменной:

    Получим уравнение:

    Ответ:

  • 3 .

    Заметим, что в знаменателях обоих дробей стоят квадратные трехчлены, у которых старший коэффициент и свободный член одинаковые. Вынесем, как и в уравнении второго типа х за скобку. Получим:

    Разделим числитель и знаменатель каждой дроби на х:

    Теперь можем ввести замену переменной:

    Получим уравнение относительно переменной t:

    Ответ:

  • 4 .

    Заметим, что коэффициенты уравнения симметричны относительно центрального. Такое уравнение называется возвратным .

    Чтобы его решить,

    1. Разделим обе части уравнения на (Мы можем это сделать, так как х=0 не является корнем уравнения.) Получим:

    2. Сгруппируем слагаемые таким образом:

    3. В каждой группе вынесем за скобку общий множитель:

    4. Введем замену:

    5. Выразим через t выражение :

    Отсюда

    Получим уравнение относительно t:

    Ответ:

  • 5. Однородные уравнения.

    Уравнения, имеющие структуру однородного, могут встретиться при решении показательных, логарифмических и тригонометрических уравнений, поэтому ее нужно уметь распознавать.

    Однородные уравнения имеют такую структуру:

    В этом равенстве А, В и С — числа, а квадратиком и кружочком обозначены одинаковые выражения. То есть в левой части однородного уравнения стоит сумма одночленов, имеющих одинаковую степень ( в данном случае степень одночленов равна 2), и свободный член отсутствует.

    Чтобы решить однородное уравнение, разделим обе части на

    Или на

    Или на

    Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

    Пойдем первым путем. Получим уравнение:

    Сократим дроби, получим:

    Теперь мы вводим замену переменной:

    И решаем квадратное уравнение относительно замены:

    .

    При решении уравнения я обычно придерживаюсь такой тактики: нужно уменьшить количество различных выражений, в состав которых входит неизвестное ( принцип «бритвы Оккама» — не нужно множить сущности без нужды), а для этого помогает разложить выражения с неизвестным на множители. Разложим выражение, стоящее в правой части уравнения на множители.

    Перенесем все влево, получим:

    Теперь мы видим, что перед нами однородное уравнение. Разделим обе части уравнения на , предварительно проверив, что х=1 не является корнем исходного уравнения.

    Теперь самое время ввести замену переменной:

    Получим квадратное уравнение:

    Ответ:

    6 .

    Это уравнение имеет такую структуру:

    Решается с помощью введения вот такой замены переменной:

    В нашем уравнении ,тогда . Введем замену:

    Теперь возведем каждую скобку в четвертую степень, используя треугольник Паскаля:

    Упростим выражение и получим биквадратное уравнение относительно t:

    Ответ: или

  • 7 .

    Это уравнение имеет такую структуру:

    Чтобы его решить, нужно в левой части уравнения выделить полный квадрат.

    Чтобы выделить полный квдарат, нужно прибавить или вычесть удовоенное произведение. Тогда мы получим квадрат суммы ли разности. Для удачной замены переменной это имеет определяющее значение.

    Начнем с нахождения удвоенного произведения. Именно оно будет ключиком для замены переменной. В нашем уравнении удвоенное произведение равно

    Теперь прикинем, что нам удобнее иметь — квадрат суммы или разности. Рассмотрим, для начала сумму выражений:

    Отлично! это выражении в точности равно удвоенному произведению. Тогда, чтобы в скобках получить квадрат суммы, нужно прибавить и вычесть удвоенное произведение:

    [/pmath]

    Введем замену:

    Получим квадратное уравнение:

    Ответ:


  • Алгебра. Урок 4. Уравнения, системы уравнений

    Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.

    Видео-уроки на канале Ёжику Понятно. Подпишись!

    Содержание страницы:

    • Линейные уравнения

    Линейные уравнения

    Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

    Примеры линейных уравнений:

    1. 3 x = 2
    1. 2 7 x = − 5

    Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

    Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

    Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

    Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

    Примеры решения линейных уравнений:

    1. 2 x + 1 = 2 ( x − 3 ) + 8

    Это линейное уравнение, так как переменная стоит в первое степени.

    Попробуем преобразовать его к виду a x = b :

    Для начала раскроем скобки:

    2 x + 1 = 4 x − 6 + 8

    В левую часть переносятся все слагаемые с x , в правую – числа:

    Теперь поделим левую и правую часть на число ( -2 ) :

    − 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

    Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

    Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

    x 2 + 3 x − 8 = x − 1

    Это уравнение не является линейным уравнением.

    Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

    1. 2 x − 4 = 2 ( x − 2 )

    Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

    2 x − 2 x = − 4 + 4

    И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

    Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

    2 x − 4 = 2 x − 16

    2 x − 2 x = − 16 + 4

    В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

    Квадратные уравнения

    Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

    Алгоритм решения квадратного уравнения:

    1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
    2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
    3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
    4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
    5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
    6. Если D 0, решений нет: x ∈ ∅

    Примеры решения квадратного уравнения:

    1. − x 2 + 6 x + 7 = 0

    a = − 1, b = 6, c = 7

    D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

    D > 0 – будет два различных корня:

    x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

    Ответ: x 1 = − 1, x 2 = 7

    a = − 1, b = 4, c = − 4

    D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

    D = 0 – будет один корень:

    x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

    a = 2, b = − 7, c = 10

    D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

    D 0 – решений нет.

    Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!

    Разложение квадратного трехчлена на множители

    Квадратный трехчлен можно разложить на множители следующим образом:

    a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )

    где a – число, коэффициент перед старшим коэффициентом,

    x – переменная (то есть буква),

    x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

    Если квадратное уравнение имеет только один корень , то разложение выглядит так:

    a x 2 + b x + c = a ⋅ ( x − x 0 ) 2

    Примеры разложения квадратного трехчлена на множители:

    1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7

    − x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )

    1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

    − x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2

    Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:

    • c = 0 ⇒ a x 2 + b x = x ( a x + b )
    • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

    Дробно рациональные уравнения

    Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

    Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

    Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

    ОДЗ – область допустимых значений переменной.

    В выражении вида f ( x ) g ( x ) = 0

    ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

    Алгоритм решения дробно рационального уравнения:

    1. Привести выражение к виду f ( x ) g ( x ) = 0 .
    2. Выписать ОДЗ: g ( x ) ≠ 0.
    3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
    4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

    Пример решения дробного рационального уравнения:

    Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

    Решение:

    Будем действовать в соответствии с алгоритмом.

    1. Привести выражение к виду f ( x ) g ( x ) = 0 .

    Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

    x 2 − 4 2 − x − 1 \ 2 − x = 0

    x 2 − 4 2 − x − 2 − x 2 − x = 0

    x 2 − 4 − ( 2 − x ) 2 − x = 0

    x 2 − 4 − 2 + x 2 − x = 0

    x 2 + x − 6 2 − x = 0

    Первый шаг алгоритма выполнен успешно.

    Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

    1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

    x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

    a = 1, b = 1, c = − 6

    D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

    D > 0 – будет два различных корня.

    x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

    1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

    Корни, полученные на предыдущем шаге:

    Значит, в ответ идет только один корень, x = − 3.

    Системы уравнений

    Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

    Пример системы уравнений

    Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

    Существует два метода решений систем линейных уравнений:

    1. Метод подстановки.
    2. Метод сложения.

    Алгоритм решения системы уравнений методом подстановки:

    1. Выразить из любого уравнения одну переменную через другую.
    2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
    3. Решить уравнение с одной неизвестной.
    4. Найти оставшуюся неизвестную.

    Решить систему уравнений методом подстановки

    Решение:

    1. Выразить из любого уравнения одну переменную через другую.
    1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
    1. Решить уравнение с одной неизвестной.

    3 ( 8 − 2 y ) − y = − 4

    y = − 28 − 7 = 28 7 = 4

    1. Найти оставшуюся неизвестную.

    x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

    Ответ можно записать одним из трех способов:

    Решение системы уравнений методом сложения.

    Метод сложения основывается на следующем свойстве:

    Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

    Решить систему уравнений методом сложения

    Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

    Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

    ( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

    − 3 x − 6 y + 3 x − y = − 24 − 4

    y = − 28 − 7 = 28 7 = 4

    Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

    Ответ можно записать одним из трех способов:

    Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.

    Тема урока: «Рациональные решения квадратных уравнений». 8-й класс

    Разделы: Математика

    Класс: 8

    Цели:

    • образовательная: обобщить и систематизировать знания и умения решения квадратных уравнений;
    • развивающая: формировать умения определять тип квадратного уравнения и выбирать рациональное решение по его коэффициентам;
    • воспитательная: воспитывать внимательность и краткость изложения решений.

    Тип урока: обобщение знаний и умений решения квадратных уравнений.

    Оборудование: компьютер, интерактивная доска, карточки с заданиями, доска.

    Эпиграф

    Метод решения хорош, если с самого начала мы можем предвидеть — и далее подтвердить это, — что, следуя этому методу, мы достигнем цели.
    (Г.Лейбниц)

    ХОД УРОКА

    1. Организационный момент.

    Учитель настраивает учащихся на урок и даёт установку на внимательность в подходе к решению квадратных уравнений.

    2. Проверка домашнего задания.

    Учащиеся сдают тетради на проверку. Учитель отвечает на возникшие вопросы у учащихся.

    3. Формулирование цели и задачи урока.

    Рассмотрим несколько вариантов решения квадратных уравнений, сравним их и научимся выбирать рациональное решение.

    4. Классификация квадратных уравнений.

    На интерактивной доске учащимся представляется таблица классификации квадратных уравнений и предлагается её прокомментировать.

    Полное квадратное уравнениеЧастные случаи полного квадратного уравнения
    ax 2 + bx + c = 0, где х – переменная,

    a, b, c – некоторые числа, причем a 0.

    D = b 2 – 4ac (дискриминант);

    если D > 0, то уравнение имеет два корня

    х1 ; х2 ;

    если D = 0, то уравнение имеет один корень (или ещё говорят, имеет два равных корня)

    х 1 х2 = );

    если D 2 +2kx + c =0,

    D = 4(k 2 –ac) = 4D1 (дискриминант), где D1 = k 2 –ac;

    если D1 >0, то D >0, уравнение имеет два корня

    х1 ; х2;

    если D1 = 0, то D = 0, уравнение имеет один корень х ;

    б) D > 0, если a+b+c=0, то

    х1 = 1; х2 = ;

    D = 0, если a+b+c=0, то

    в) D > 0, если a-b+c=0, то

    х1 = -1; х2 = ;

    D = 0, если a-b+c=0, то

    х = -1.Приведенное квадратное уравнениеЧастный случай приведенного квадратного уравненияx 2 + px + q = 0, если D > 0, уравнение имеет два корня и решается по теореме, обратной теореме Виета х12 = -p, х1·х2 = q.Если p – четное, D = 4(– q)= 4D2 (дискриминант),

    где D2 = (– q);

    D2 > 0, то D > 0, уравнение имеет два корня

    х1 + , х2 .

    Неполное квадратное уравнениеа) ax 2 + c = 0, где с0;

    если — > 0, то

    х1 , х2 = ;

    если — 2 + bx = 0, где b0; уравнение имеет два корня

    х1 = 0, х2 = — .в) ax 2 = 0; уравнение имеет один корень

    х = 0.Метод “переброски”

    ax 2 + bx + c = 0, для решения данного квадратного уравнения составим и решим вспомогательное квадратное уравнение путём умножения свободного члена на первый коэффициент и запишем это произведение в новом уравнении свободным членом, т.е. получим квадратное уравнение вида

    у 2 + by + ac = 0. Полученное квадратное уравнение можно решать любым рациональным способом (как правило, по теореме, обратной теореме Виета). Его корни — у1 и у2. Корни исходного квадратного уравнения:

    х1 = и х2 = .

    5. Ознакомившись с таблицей классификации, трём учащимся предлагается составить свои уравнения для каждого случая и решить их на доске с последующими комментариями.

    1. 5х 2 – 11х + 2 = 0;

    D = b 2 – 4ac = (-11) 2 — 45·2 = 81; D > 0, уравнение имеет два корня;

    х1 = = = 0,2;

    х2 = = = 2.

    2. 3х 2 – 14х + 16 = 0;

    D1 = k 2 –ac = (-7) 2 — 316 = 1; D > 0, уравнение имеет два корня;

    х1 = = = 2;

    х2 = = = 2.

    Ответ: 2; 2.

    3. 15х 2 +22х — 37 = 0;

    D > 0, уравнение имеет два корня;

    Так как 15 + 22 – 37 = 0, то х1 = 1, х2 = = — 2 .

    Ответ: 1; — 2 .

    Следующим трём учащимся предлагается аналогичное задание, но для других случаев.

    4. -15х 2 + 22х + 37 = 0;

    D > 0, уравнение имеет два корня;

    Так как -15– 22 + 37 = 0, то х1 = -1 , х2 = = 2 .

    Ответ: -1; 2 .

    5. х 2 – 5х + 6 = 0;

    D > 0, уравнение имеет два корня;

    по теореме, обратной теореме Виета х12 = 5, х1·х2 = 6.

    6. х 2 – 6х + 7 = 0;

    D > 0, уравнение имеет два корня;

    по формуле корней приведенного квадратного уравнения с чётным вторым коэффициентом имеем

    х1 + , х2.

    Ответ: , + .

    Следующему учащемуся предлагается решить квадратное уравнение методом “переброски”.

    7. 5х 2 + 37х — 24 = 0;

    D > 0, уравнение имеет два корня;

    составим вспомогательное уравнение

    у 2 + 37y – 120 = 0; по теореме, обратной теореме Виета у1+ у2 = -37, у1·у2 = -120.

    Значит, у1 = -40, у2 = 3, тогда корни исходного уравнения

    х1 = — 8, х2 = .

    Ответ: — 8, .

    6. Устные упражнения:

    (учащимся предлагается прокомментировать возможные способы рационального решения квадратного уравнения).

    1. 2х 2 + 3х + 1 = 0; (D > 0, a – b + c = 0);

    2. х 2 + 5х — 6 = 0; (D > 0, a + b + c = 0);

    3. 3х 2 — 7х + 4 = 0; (D > 0, a + b + c = 0);

    4. 5х 2 + 8х + 3 = 0; (D1 > 0, значит, D > 0, a – b + c = 0);

    5. у 2 — 10y – 24 = 0; (D2 > 0, значит, D > 0, по формуле корней приведенного квадратного уравнения с чётным вторым коэффициентом);

    6. у 2 + y – 90 = 0; (D > 0, по теореме, обратной теореме Виета);

    7. у 2 — 8y – 84 = 0; (D2 > 0, значит, D > 0, по формуле корней приведенного квадратного уравнения с чётным вторым коэффициентом);

    8. 3х 2 — 8х + 5 = 0; (D1 > 0, значит, D > 0, a + b + c = 0);

    9. 3х 2 + 6х = 0; (неполное квадратное уравнение; случай б));

    10. 4х 2 — 16 = 0; (неполное квадратное уравнение; случай а));

    11. 3у 2 — 3y + 1 = 0; (D 2 — 5х — 1 = 0; (D > 0, метод “переброски”).

    7. Творческая самостоятельная работа

    (по карточкам; в двух вариантах; с последующей устной проверкой).

    8. Домашнее задание.

    1. Повторите таблицу классификации квадратных уравнений.

    2. Решите квадратные уравнения наиболее рациональным способом:

    3. Составить пять квадратных уравнений с недостающими коэффициентами.


    источники:

    http://epmat.ru/modul-algebra/urok-4-uravneniya-sistemy-uravnenij/

    http://urok.1sept.ru/articles/648424