Квадратные тригонометрические уравнения и приводимые к ним

Как решать тригонометрические уравнения, сводящиеся к квадратным — примеры

Основные понятия по теме

Тригонометрическими уравнениями называют уравнения с неизвестной, которая расположена строго под знаком тригонометрической функции.

Квадратные тригонометрические уравнения являются такими уравнениями, которые имеют вид:

a sin 2 x + b sin x + c = 0

Здесь a отлично от нуля.

Тригонометрические уравнения, сводящиеся к квадратным, обладают следующими признаками:

  1. Наличие в уравнении тригонометрических функций от одного аргумента, либо таких, которые можно просто свести к одному аргументу.
  2. Присутствие в уравнении единственной тригонометрической функции, либо все функции можно свести к одной.

Правила решения тригонометрических уравнений сводящихся к квадратным

Рассмотрим случай, когда преобразованное уравнение записано таким образом:

a f 2 ( x ) + b f ( x ) + c = 0

При этом а отлично от нуля, f ( x ) является одной из функций sin x , cos x , tg x , ctg x .

Тогда данное уравнение путем замены f ( x ) = t сводится к квадратному уравнению.

Существует ряд правил, позволяющих решать тригонометрические уравнения, сводящиеся к квадратным. Данная информация будет полезна при выполнении самостоятельных работ и практических заданий в десятом классе.

sin 2 α + cos 2 α = 1 tg α · ctg α = 1 tg α = sin α cos α ctg α = cos α sin α 1 + tg 2 α = 1 cos 2 α 1 + ctg 2 α = 1 sin 2 α ▸

Формулы двойного угла:

sin 2 α = 2 sin α cos α cos 2 α = cos 2 α — sin 2 α sin α cos α = 1 2 sin 2 α cos 2 α = 2 cos 2 α — 1 cos 2 α = 1 — 2 sin 2 α tg 2 α = 2 tg α 1 — tg 2 α ctg 2 α = ctg 2 α — 1 2 ctg α ▸

Последовательность действий при решении тригонометрических уравнений, сводящихся к квадратным:

  • выражение одной тригонометрической функции с помощью другой путем применения основных тождеств;
  • выполнение подстановки;
  • преобразование уравнения;
  • введение обозначения, к примеру, sin x = y;
  • решение квадратного уравнения;
  • обратная замена;
  • решение тригонометрического уравнения.

Рассмотрим решение тригонометрического уравнения:

6 cos 2 x — 13 sin x — 13 = 0

cos 2 α = 1 — sin 2 α

В результате уравнение преобразуется таким образом:

6 sin 2 x + 13 sin x + 7 = 0

Заменим sin x на t. Зная, что ОДЗ синуса sin x ∈ [ — 1 ; 1 ] , запишем, t ∈ [ — 1 ; 1 ] . Тогда:

6 t 2 + 13 t + 7 = 0

Заметим, что t 1 не соответствует условиям. Выполним обратную замену и получим решение уравнения:

sin x = — 1 ⇒ x = — π 2 + 2 π n , n ∈ ℤ .

Разберем другой пример:

5 sin 2 x = cos 4 x — 3

Воспользуемся уравнением двойного угла для косинуса:

cos 2 α = 1 — 2 sin 2 α

cos 4 x = 1 — 2 sin 2 2 x

Подставим значения и преобразуем уравнение:

2 sin 2 2 x + 5 sin 2 x + 2 = 0

Заменим sin 2 x на t. Зная, что ОДЗ для синуса sin 2 x ∈ [ — 1 ; 1 ] , можно записать:

2 t 2 + 5 t + 2 = 0

Заметим, что t 1 является посторонним, так как не соответствует условию. Путем обратной замены получим:

sin 2 x = — 1 2 ⇒ x 1 = — π 12 + π n , x 2 = — 5 π 12 + π n , n ∈ ℤ .

Примеры решения задач с пояснениями

Найти корни уравнения:

tg x + 3 ctg x + 4 = 0

При tg x · ctg x = 1 имеем, что:

Заменим tg x на t. Зная, что ОДЗ тангенса tg x ∈ ℝ , запишем:

t + 3 t + 4 = 0 ⇒ t 2 + 4 t + 3 t = 0

Вспомним, что дробь может обладать нулевым значением при нулевом числителе и знаменателе, отличном от нуля. В результате:

Путем обратной замены получим:

Ответ: x = — arctg 3 + π n , x = — π 4 + π n , n ∈ ℤ .

Решить тригонометрическое уравнение на интервале ( — π ; π ) :

2 sin 2 x + 2 sin x — 2 = 0

Заменим sin x на t. В результате уравнение преобразуется:

2 t 2 + 2 t — 2 = 0

Определим дискриминант уравнения:

Таким образом, корни равны:

Исходя из того, что t = sin x ∈ [ — 1 ; 1 ] , можно сделать вывод о лишнем корне t 2 . В результате:

sin x = 2 2 ⇔ x = π 4 + 2 π n

x = 3 π 4 + 2 π m , n , m ∈ ℤ .

Выполним проверку корней на соответствие условиям задания:

— π π 4 + 2 π n π ⇔ — 5 8 n 3 8 ⇒ n = 0 ⇒ x = π 4 .

— π 3 π 4 + 2 π m π ⇔ — 7 8 m 1 8 ⇒ m = 0 ⇒ x = 3 π 4 .

Ответ: корни уравнения π 4 + 2 π n ; 3 π 4 + 2 π m ; n , m ∈ ℤ , из них соответствуют интервалу π 4 ; 3 π 4 .

Дано тригонометрическое уравнение, которое нужно решить на отрезке ( 0 ; π ) :

2 sin 2 x + 2 = 5 sin x

Заметим, что область допустимых значений определяет х как произвольное число. Перенесем члены в левую часть:

2 sin 2 x + 2 — 5 sin x = 0

Данное уравнение является квадратным по отношению к sin x . Заменим sin x на t. Тогда уравнение будет преобразовано таким образом:

2 t 2 — 5 t + 2 = 0

Исходя из того, что sin x ≤ 1 , sin x = 2 является лишним корнем. Таким образом:

Решениями sin x = a являются:

x = arcsin a + 2 π k

x = π — arcsin a + 2 π k

Здесь k ∈ ℤ . В результате, корнями уравнения sin x = 0 , 5 являются:

x = 5 π 6 + 2 π k

Определим, какие корни соответствуют интервалу:

0 π 6 + 2 π k π ⇔ — π 6 2 π k 5 π 6 ⇔ — 1 12 k 5 12

Заметим, что k ∈ ℤ . В таком случае из этих корней подходящими являются лишь те, что соответствуют условию k = 0:

Рассмотрим другие решения:

0 5 π 6 + 2 π k π ⇔ — 5 π 6 2 π k π 6 ⇔ — 5 12 k 1 12

Заметим, что k ∈ ℤ . В таком случае выберем решение при k = 0:

Ответ: корни уравнения π 6 + 2 π k , 5 π 6 + 2 π k , при k ∈ ℤ ; решения, соответствующие интервалу π 6 , 5 π 6 .

Решить уравнение на промежутке [ π ; 3 π ) :

ctg 2 x + 1 cos x — 11 π 2 — 1 = 0

Вспомним формулу приведения:

cos x — 11 π 2 = — sin x

Также пригодится формула:

ctg 2 x + 1 = 1 sin 2 x

1 sin 2 x — 1 — 1 sin x — 1 = 0 ⇔ 1 sin 2 x — 1 sin x — 2 = 0

Заменим 1 sin x на t. В результате:

Путем обратной замены получим:

sin x = — 1 ⇔ x = — π 2 + 2 π n , n ∈ ℤ sin x = 1 2 ⇔ x = π 6 + 2 π k ; x = 5 π 6 + 2 π m , k , m ∈ ℤ .

Определим подходящие решения:

Ответ: корни уравнения — π 2 + 2 π n ; π 6 + 2 π k ; 5 π 6 + 2 π m ; n , k , m ∈ ℤ , из них соответствуют интервалу 3 π 2 ; 13 π 6 ; 17 π 6 .

Определить корни уравнения на отрезке ( π ; 2 π ) :

cos ( 2 x ) + 3 2 sin x = 3

Область допустимых значений предусматривает произвольные значения для х. На первом этапе следует преобразовать уравнение с помощью формулы косинуса двойного угла и перенести члены уравнения в левую сторону:

1 — 2 sin 2 x + 3 2 sin x — 3 = 0 ⇔ 2 sin 2 x — 3 2 sin x + 2 = 0

Заметим, что в результате получено уравнение, которое является квадратным по отношению к sin x . Заменим sin x на t. В результате:

2 t 2 — 3 2 t + 2 = 0

t 1 , 2 = 3 2 ± 2 4

Исходя из того, что sin x ≤ 1 , делаем вывод о лишнем корне sin x = 2 . В результате:

Решения для уравнения sin x = a следующие:

x = arcsin a + 2 π k

x = π — arcsin a + 2 π k

Здесь k ∈ ℤ . В результате получим следующие решения для sin x = 2 2 :

x = 3 π 4 + 2 π k

Определим подходящие корни:

π π 4 + 2 π k 2 π ⇔ 3 π 4 2 π k 7 π 4 ⇔ 3 8 k 7 8

Заметим, что k ∈ ℤ . Тогда указанные корни не соответствуют интервалу ( π ; 2 π ) .

Определим корни, которые подходят к задаче:

π 3 π 4 + 2 π k 2 π ⇔ π 4 2 π k 5 π 4 ⇔ 1 8 k 5 8

Зная, что k ∈ ℤ , можно сделать вывод об отсутствии корней, которые соответствуют интервалу ( π ; 2 π ) .

Ответ: корни уравнения π 4 + 2 π k , 3 π 4 + 2 π k , где k ∈ ℤ , решения, соответствующие интервалу, отсутствуют.

Требуется найти решения тригонометрического уравнения:

3 tg 4 2 x — 10 tg 2 2 x + 3 = 0

Корни нужно записать в соответствии с интервалом — π 4 ; π 4

Область допустимых значений в данном случае:

Заменим tg 2 2 x на t, при t ⩾ 0 . Уравнение будет преобразовано таким образом:

3 t 2 — 10 t + 3 = 0

Путем обратной замены получим:

Можно сделать вывод о выполнении условия относительно области допустимых значений при найденных значениях х . Тогда остается отобрать нужные корни:

— π 4 π 6 + π 2 n 1 π 4 ⇒ — 5 6 n 1 1 6 ⇒ n 1 = 0 ⇒ x = π 6

Вычислим еще три решения, которые включены в заданный интервал:

x = — π 12 ; — π 6 ; π 12 .

Ответ: корнями уравнения являются ± π 6 + π 2 n , ± π 12 + π 2 m , n , m ∈ ℤ , из них соответствуют промежутку — π 6 ; — π 12 ; π 12 ; π 6 .

Решение квадратных тригонометрических уравнений

Тригонометрия

Решение квадратных тригонометрических уравнений.

Уравнение распадается на два уравнения: и

Решение первого уравнения: ,

Решение второго уравнения:

Объединяем эти решения и получим:

Уравнение распадается на два уравнения: и

Решение первого уравнения: ,

Решение второго уравнения: ,

Объединяем эти решения и получим:

Для решения данного уравнения введен новую переменную: sin ( x )= t ,

Определим область допустимых значений для нашей переменной:

Решим квадратное уравнение относительно t :

Проверяем корни нашего уравнения на область допустимых значений t

Решаем полученные уравнения относительно x :

Для решения данного уравнения введен новую переменную: cos ( x )= t ,

Определим область допустимых значений для нашей переменной:

Решим квадратное уравнение относительно t :

Проверяем корни нашего уравнения на область допустимых значений t

t = 2 > 1 , следовательно не имеет решений:

В данном случае решать уравнение является грубейшей ошибкой, т.к. , а arccos 2 вообще не имеет смысла!

t = , следовательно , решаем полученное уравнение:

В данном уравнении необходимо применить основное тригонометрическое тождество, для того чтобы прийти к одной функции

Приводим к функции синуса, т.к. проще представить

, приводим подобные слагаемые:

, умножим на (-1) для простоты решения:

Для решения данного уравнения введен новую переменную: sin ( x )= t ,

Определим область допустимых значений для нашей переменной:

Решим квадратное уравнение относительно t :

Проверяем корни нашего уравнения на область допустимых значений t

t = , следовательно, не имеет решений:

t = , следовательно, , ответ

Разберемся с областью определения для решений данного уравнения.

Область определения тангенса

Область определения котангенса

Объединив эти промежутки получим:

, на чертеже обозначено выколотыми точками.

Для решения данного уравнения используем тригонометрическое тождество , перепишем уравнение:

Решим квадратное уравнение относительно t :

Методический материал по математике на тему » Тригонометрические уравнения, сводящиеся к квадратным»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Тема: Тригонометрические уравнения, сводящиеся к квадратным.

Это уравнение является квадратным относительно sin x .

тогда получим уравнение:

Кони данного уравнения найдем по формуле:

Решим простейшие уравнения:

х = + 2 π n , n Ζ

2) sin x = — 2 не имеет корней

Ответ: х = + 2 π n , n Ζ

Это уравнение является квадратным относительно cos x .

тогда получим уравнение:

Кони данного уравнения найдем по формуле:

Решим простейшие уравнения:

Р . С . 1) sin 2 x + 2 sin x – 3 = 0.

2) 2 cos 2 x – 9 cos x + 4 = 0.

3) 2sin 2 x – cos x – 1 = 0.

Используя формулу sin 2 x = 1 – cos 2 x

получаем: 2 (1 – co s 2 x ) – cos x – 1 = 0,

2 – 2 cos 2 x – cos x – 1 = 0,

– 2 cos 2 x – cos x + 1 = 0 или 2 cos 2 x + cos x – 1 = 0.

тогда получим уравнение:

Кони данного уравнения найдем по формуле :

Решим простейшие уравнения:

х = π + 2 π n , n Ζ

Ответ: х = π + 2 π n , n Ζ

n Ζ

4) 2 cos 2 x – 5 sin x + 1 = 0.

Заменим со s 2 x = 1 – sin 2 x ,

тогда уравнение примет вид:

2 (1 – sin 2 x) – 5 sin x + 1 = 0,

2 – 2 sin 2 x – 5 sin x + 1 = 0,

— 2 sin 2 x – 5 sin x + 3 = 0

или 2 sin 2 x + 5 sin x – 3 = 0.

тогда получим уравнение :

Кони данного уравнения найдем по формуле:

Решим простейшие уравнения:

1) sin x = — 3 не имеет корней

Ответ:

Р . С . 1) 4sin 2 x – 3 cos x – 3 = 0.

2) 3 cos 2 x – 2 sin x – 2 = 0.

Тема: Тригонометрические уравнения, сводящиеся к квадратным.

тогда получим уравнение:

Корни данного уравнения найдем по формуле :

Решим простейшие уравнения:

1) tg x =

x = arctg () + π n, n Ζ

x = – arctg + π n , n Ζ

х = + π n , n Ζ

Ответ : х = + π n , n Ζ

x = – arctg + π n, n Ζ

6) tg x – 2 ctg x + 1 = 0.

Так как ,

то уравнение запишем в виде:

умножим обе части уравнения на tg x , получаем tg 2 x + tg x – 2 = 0,

тогда получим уравнение:

Корни данного уравнения найдем по формуле :

Решим простейшие уравнения:

х = + π n , n Ζ

x = arctg (– 2 ) + π n , n Ζ

x = – arctg 2 + π n , n Ζ

Ответ : х = + π n , n Ζ

x = – arctg 2 + π n , n Ζ

Р.С. 1) 4 tg 2 x – tg x – 5 = 0,

2) tg x + 7 ctg x – 8 = 0.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 932 человека из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 682 человека из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 308 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 573 882 материала в базе

Материал подходит для УМК

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

§ 36. Решение тригонометрических уравнений

Другие материалы

  • 06.11.2017
  • 1113
  • 9

  • 06.11.2017
  • 360
  • 1

  • 06.11.2017
  • 419
  • 0

  • 06.11.2017
  • 1722
  • 3

  • 06.11.2017
  • 2810
  • 3

  • 06.11.2017
  • 543
  • 0

  • 06.11.2017
  • 352
  • 5

  • 06.11.2017
  • 442
  • 3

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 06.11.2017 2546
  • DOCX 225.5 кбайт
  • 112 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Головина Ирина Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 6 лет и 7 месяцев
  • Подписчики: 0
  • Всего просмотров: 35891
  • Всего материалов: 47

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

В Воронеже продлили удаленное обучение для учеников 5-11-х классов

Время чтения: 1 минута

Объявлен конкурс дизайн-проектов для школьных пространств

Время чтения: 2 минуты

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://math4everyone.info/math/reshenie-kvadratnyh-trigonometricheskih-uravnenij/

http://infourok.ru/metodicheskiy-material-po-matematike-na-temu-trigonometricheskie-uravneniya-svodyaschiesya-k-kvadratnim-2253620.html