Квадратные уравнения и неравенства тема

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №3. Квадратные уравнения, неравенства и их системы.

Перечень вопросов, рассматриваемых в теме:

  • систематизация знаний учащихся о решении квадратных уравнений и неравенств;
  • установление зависимости количества и расположения корней квадратного уравнения от его коэффициентов и значения дискриминанта;
  • способы решения квадратных уравнений и неравенств с параметрами.

Глоссарий по теме:

Параметр — (от греч. parametron — отмеривающий) в математике, величина, числовые значения которой позволяют выделить определенный элемент из множества элементов того же рода.

Колягин Ю. М., Ткачева М. В., Фёдорова Н.Е. и др. Алгебра и начала математического анализа. 10 класс. Базовый и углублённый уровни. — М.: Просвещение, 2017.

Ткачева М. В., Федорова Н. Е. Алгебра и начала математического анализа. Тематические тесты. 10 класс. Базовый и профильный уровни. 2016.

Шабунин М. И., Ткачева М. В., Фёдорова Н.Е. и др. Алгебра и начала математического анализа. Дидактические материалы. 10 класс. Профильный уровень. 2016.

Теоретический материал для самостоятельного изучения

В курсе средней школы будут рассматриваться показательные, логарифмические, тригонометрические уравнения и неравенства. Чтобы облегчить дальнейшее изучение специальных уравнений, нужно уметь решать квадратные уравнения и неравенства, устанавливать и объяснять зависимость вида решения от его коэффициентов и дискриминанта, представлять геометрическую интерпретацию задач.

На уроке будем рассматривать различные способы решения квадратных уравнений.

Как определить, сколько корней имеет уравнение, подскажет дискриминант.

Дискриминант – это число, которое находим по формуле

Если D 0 два корня.

Если дискриминант D> 0 , корни можно найти по формуле:

Если D = 0 , то

Рассмотрите пример. Решить уравнение

Шаг 1. Выпишем коэффициенты a, b, c.

Шаг 2. Найдем дискриминант. D=16.

Шаг 3. Запишем формулу корней и подставим значения. Вычислим значения корней:

1.Перед решением квадратного уравнения привести его к стандартному виду.

2. Избавьтесь от минуса перед . Для этого надо умножить всё уравнение на -1.

3. Если в уравнении есть дробные коэффициенты, умножьте уравнение на общий знаменатель.

4. Проверяйте корни по теореме Виета. Это просто, когда a=1.

Рассмотрите другие формулы:

, где второй коэффициент b=2k – четное число.

Приведенное квадратное уравнение , старший коэффициент равен a= 1, проще решать по теореме Виета.

Уравнение (х-3) (х+5) =0 является квадратным. Для его решения воспользуйтесь свойством: произведение равно 0, когда один из множителей равен 0.

Осталось вспомнить, как решаются неполные квадратные уравнения. Неполные — значит один или два коэффициента равны нулю.

Для решения систем уравнений применяются все методы решения: подстановки, сложения, графический.

Рассмотрим несколько примеров:

Если из одного из уравнений можно выразить х или у, применяем метод подстановки. Выразите х из первого уравнения и подставьте во второе. Решите и найдите корни.

Применяем метод сложения. Выполнив сложение, получаем уравнение , далее x= ±5. Находим у= ±2. Составляем возможные пары чисел.

Записываем ответ: (5; 2), (5; -2), (-5; 2), (- 5; -2).

Пример 3. Иногда проще ввести новые переменные.

Пусть xy=u, x+y=v. Тогда систему можно записать в более простом виде:

Решение смотри в примере 1.

Часть 2. Квадратные неравенства.

Теперь, когда мы разобрали решение квадратных уравнений, переходим к решению квадратных неравенств
ax^2+ bx + c больше или меньше нуля.

Шаг 1. Запишем соответствующее неравенству квадратное уравнение и найдем его корни. Отметим корни на оси OХ и схематично покажем расположение ветвей параболы «вверх» или «вниз».

Шаг 2. Расставим на оси знаки, соответствующие знаку квадратичной функции: там, где парабола выше оси, ставим +, а там, где ниже –.

Шаг 3. Выписываем интервалы, соответствующие знаку неравенства. Если неравенство нестрогое, корни входят в интервал, если строгое не входят.

Вспомните возможные случаи расположения корней на оси и ветвей параболы в зависимости от коэффициента а и дискриминанта.

Метод интервалов упрощает схему решения. По-прежнему находим корни квадратного трехчлена, расставляем на числовой прямой. Определяем знаки на интервалах + или – по схеме:

если а>0 + — +, если а 0 ветви вверх. Парабола выше оси, все значения положительны, значит х- любое число. Неравенство не имеет решений.

Далее рассмотрим схему решения системы неравенств.

Алгоритм решения системы неравенств.

1.Решить первое неравенство системы, изобразить его графически на оси x.

2.Решить второе неравенство системы, изобразить его графически на оси x.

3.Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

Теперь, когда мы разобрали решение квадратных уравнений и неравенств переходим к решению самых сложных заданий с параметрами. Если в уравнении или неравенстве некоторые коэффициенты заданы не числовыми значениями, а обозначены буквами, то они называются параметрами, а само уравнение или неравенство параметрическим.

Первый шаг в решении — найти особое значение параметра.

Второй шаг – определить допустимые значения.

Если в задаче требуется определить знаки корней квадратного уравнения, то, как правило, удобнее использовать теорему Виета.

Но прежде, чем применять теорему Виета, обязательно нужно проверить, что уравнение имеет корни! Для этого вычисляем дискриминант.

Рассмотрите примеры решения неравенства с параметром.

Графический метод решения обладает несомненным преимуществом – можно представить решение наглядно.

Для любого свойства, сформулированного на алгебраическом языке, нужно уметь давать геометрическую интерпретацию и, наоборот, по поведению графика параболы дать общую оценку коэффициентов квадратного трехчлена и его корней.

Например, если старший коэффициент квадратного трехчлена меньше 0, то ветви параболы направлены вниз. Если дискриминант больше 0, то трехчлен имеет различные действительные корни и парабола пересекает ось абсцисс в двух точках и т.д.

Мы рассмотрели лишь некоторые примеры, иллюстрирующие применение графического метода к решению квадратных уравнений и неравенств. Более подробно с методами решения квадратных уравнений, неравенств, их систем вы можете, поработав с интерактивными моделями.

Задания тренировочного модуля с разбором.

При каких значениях параметра, а квадратное уравнение

имеет только один корень?

Находим дискриминант D=25-4∙2∙5a=25-40a. Уравнение имеет один корень, если D=0, т.е. 25-40a=0, а=5/8.

Определите, на каком интервале значения квадратного трехчлена отрицательны?

Решаем неравенство: . Находим дискриминант квадратного трехчлена D= 1-4∙2∙ (-1) =1+8=9. Находим корни . Расставляем точки на числовой прямой.

Методические рекомендации по изучению тем: 1. Квадратные уравнения. 2. Квадратичная функция. 3. Квадратные неравенства методом УДЕ

Разделы: Математика

Введение
“Противопоставление облегчает и ускоряет наше здоровое мышление”

Академик И.Павлов“В каждый момент – в нашем мозгу происходит развертывание впечатлений, сопоставление наблюдений с уже известными образами. Отличительная особенность этого состоит в широком, использовании аналогий и прототипов”

Академик И. Пригожин

Все согласны с тем, что нет “царского пути в математику”. Много труда в терпения, настойчивости и внимания требуется от учителя и школьника, чтобы последний смог освоить программный минимум знание по этому предмету.

Мы привыкли сейчас к открытиям, одно поразительнее другого:

  • изобретены лазеры и голография;
  • расшифрован код наследственности;
  • синтезирован ген;
  • научались выращивать копии животных.

Недалеко, видимо, то время, когда и в психологии в педагогике будут найдены такие средства обучения, эффективность которых трудно сейчас представить.

Н.Е. Жуковский имел основания считать, что методы обучения математике можно сделать столь совершенными, что ее будет понимать “всякий желающий из публики”.

Добиться того, чтобы человек за меньшее, чем прежде, время овладел большим объемом основательных и действенных знаний, – такова одна из главных забот современной педагогики.

Нередко структура учебника математики определяет лишь формально – логическими связями самой науки математики, вне учета закономерностей усвоения математических знаний.

Между тем средства формальной логики ограничены, они упорядочивают отвлеченные результаты мышления, но никак не сам процесс мышления, к этим результатам приводящий.

Формально – логические соображения не только не являются единственными, но и не являются главными при решении вопросов методики: дело в том, что категории формальной логики не учитывают фактора времени, учет которого являются важнейшем элементом для совершенствования процесса обучения.

Как при изобретении новых механизмов, так и при конструировании новых методов обучения исходным толчком к удачным находкам и обобщениям могут стать соображения, связанные с любой из указанных наук. Это человек для удобства создал разные науки, а “природа не знает деления на науки”.

Укрупненная дидактическая единица – это клеточка учебного процесса, состоящая из логически различных элементов, обладающих в то же время информационной общностью. Укрупненная дидактическая единица обладает качествами системности и целостностями, устойчивостью к сохранению во времени и быстрым проявлением в памяти.

Понятие укрупнения единицы усвоения достаточно общо, оно вбирает следующие взаимосвязанные конкретные подходы к обучению:

  1. совместное и одновременное изучение взаимосвязанных действий, операций, функций теорем и т.п. (в частности, взаимно обратных);
  2. обеспечение единства процессов составления и решения задач (уравнений, неравенств т.п.);
  3. рассмотрение во взаимопереходах определенных и неопределенных заданий (в частности, деформированных упражнений);
  4. обращение структуры упражнения, что создает условия для противопоставления исходного и преобразованного заданий;
  5. выявление сложной природы математического знания, достижение системности знаний;
  6. реализация принципа дополнительности в системе упражнений (понимание достигается в результате межкодовых переходов между образным и логическим в мышлении, между его сознательным и подсознательным компонентами).

Общность выводов теоретического анализа позволяет предвидеть и выгоды переноса указанной методической системы с младших классов на старшие, с математики на друга учебные предметы, от школьной практики в вузовскую дидактику.

Фактором, обеспечивающим высокое качество укрупненного знания, может выступить:

  • общий графический образ;
  • общность символов для группы формул;
  • наличие одних и тех же слов или словосочетаний в сравниваемых высказываниях, в цепи доказательств и в ткани развивающихся системных знаний, предыдущие и последующие во времени звенья должны иметь, как правило, больше общих носителей информации, начиная, с возможно более низкого, кода.

Цели: формирование умения решать квадратные уравнения и неравенства, строить графики квадратичных функций, развитие самостоятельного и творческого мышления, воспитание самостоятельной и творческой личности, потребности к учению.

Задачи:

  • изучить одновременно взаимообратные действия и операции;
  • обеспечить единство процессов составления и решения уравнений, неравенств;
  • сформировать общеучебные, интеллектуальные практические умения.

Тематическое планирование курса алгебры 8-го класса
(3 ч. в неделю, всего 102 часа)

Сейчас существует множество учебников я методических рекомендаций по изучению “Алгебры 7-11 кл.”. Учителю в данной сфере важно выбрать для своих учеников наиболее оптимальный и адаптированный вариант для контингента учащихся данного класса. А самое главное, расположить изучаемый материал в логической последовательности, чтобы повысить эффективность и качество усвоения изучаемого материала. Так например, можно укрупнить и преподать в логической цепи такие темы “Линейная функция. Решение линейных уравнений и неравенств. Решение систем линейных уравнений и неравенств”. Мне бы хотелось остановиться на изложении следующих тем “Квадратные уравнения Квадратичная функция. Квадратные неравенства”.

Примерное тематическое планирование курса алгебры 8 класса
(3 часа в неделю, всего 102 часа)

15 ч.
18 ч.
12 ч.
20 ч.
17 ч.
13 ч.
7 ч.

  1. Приближенные вычисления
  2. Квадратные корни
  3. Иррациональные числа
  4. Квадратные уравнения
  5. Квадратичная функция
  6. Квадратные неравенства
  7. Итоговое повторение

Планирование тем в такой последовательности предусматривает работу учащихся 8 классов по учебнику О.П. Эрдниева, П.М. Эрдниева “Математика” 8 класс.

Изучение темы “Квадратные уравнения” начинается с III четверти, на которую я отвожу – 20ч.

  1. Вид квадратных уравнений с заданными корнями. Решение неполных квадратных уравнений.
  2. Решение приведенных квадратных уравнений т. Виета
  3. Решение полных квадратных уравнений т. Виета
  4. Решение биквадратных уравнений
  5. Решение задач с помощью квадратных уравнений
  6. Обобщающий урок
  7. Контрольная работа
– 3 ч.
– 4 ч.
– 4 ч.
– 3 ч.
– 4 ч
– 1 ч.
– 1 ч.

Важно, что на обобщающем уроке учащиеся вместе с учителем систематизируют и упорядочивают всю информацию по решению квадратных уравнений, заполнив следующую таблицу:

Виды квадратных уравнений

ах2+bx+c=0Если b=0 или c=0, то уравнение имеет вид ax 2 +c=0; ax 2 +bx=0 и называется

неполнымЕсли a=1, то уравнение имеет вид x 2 +px+q=0 и называется

приведеннымЕсли b, c, a ? 0, то уравнение имеет вид ax 2 +bx+c=0 и называется

полным

Формулы корней квадратных уравнений1. ax 2 +bx=0
x(ax+b)=0
x1=0, или x2=-b/a
(2-а корня)

2. ax 2 +c=0
ax 2 =-c
x 2 =-c/a

x1,2= ±

если –c/a >0
(2 корня)

если –c/a 0
ax 2 -c=0
x 2 -c/a=0

(x-)(x+)=0

x1=- или x2=x 2 +px+q=0

x1,2=-p/2±

если p 2 /4-q>0, то 2 корня
если p 2 /4-q=0, то 1 корень
если p 2 /4-q 2 +bx+c=0

x1,2=

b 2 -4ac=D – называется дискриминант

если D>0, то 2 корня
если D=0, то 1 корень
если D 2 +px+q=0
x1+x2=-p
x1? x2=qax 2 +bx+c=0

a

a
x1+x2=-b/a
x1? x2=c/bСумма корней приведенного квадратного уравнения равна второму коэффициенту, взятом с противоположным знаком, а произведение корней равно свободному члену.

На изучение темы “Квадратичная функция” отвожу 17 часов и распределяю материал следующим образом:

  1. График квадратичной функции у = ах 2
  2. Построение графика функции у = ах 2 + bх + с переносом графика функции у = ах 2 . Применение метода неопределенных коэффициентов
  3. Построение графика квадратного трехчлена выделением полного квадрата
  4. Координаты вершины параболы
  5. Исследование квадратного трехчлена
  6. Обобщающей урок
  7. Контрольная работа
2 часа
4 часа
4 часа
2 часа
3 часа
1 час
1 час

Можно изучение квадратичной функции вида у = ах 2 провести в форме лабораторной работы. Урок можно построить следующим образом.

Урок №1-2
Тема:
Функция у = ах 2

Цель: Построение функции у = ах 2 , свойства данной функции; построение графиков функции вида у = ах 2 , изучение влияния значения коэффициента а на форму и расположение параболы.

Ход урока

1. Построение графика функции у = ах 2 , изучения ее свойства

Рассмотрим функцию у = ах 2 , то есть квадратичную функцию у = ах 2 +bх+с при a= 1, b =с = 0. Для построения графика этой функции составим таблицу ее значений:

x± 4± 3± 2± 1± 0,50
y=ax 2169410,250

Построив указанные в таблице точки и соединив их плавной кривой, получим график функции у = ах 2 .

Кривая, являющаяся графиком функции у = ах 2 , называется параболой.

Рассмотрим свойства функции у = ах 2 .

  1. значениями аргумента (абсциссами) могут быть любые числа. Говорят, областью изменения аргумента является множество действительных чисел;
  2. график функции у = ах 2 симметричен относительно оси ординат, то есть, ось ординат является осью симметрии параболы;
  3. парабола у = ах 3 проходит через начало координат, то есть, парабола у = ах 3 касается оси абсцисс в точке (0;0), которая является вершиной параболы;
  4. функция у = аx 2 является возрастающей на промежутке х>0.
  5. функция у = ах 2 является убывающей на промежутке х 2

Цель: изучение влияния значения коэффициента а на форму и расположение параболы.

Оборудование:

  • Матрица “Расположение и форма параболы у = ах 2 в зависимости от значения коэффициента а”.
  • Таблицы функции у = х 2 , у = 2х 2 , у = 0,5х 2 .
  • Маркеры трех цветов (красный, зеленый, синий).

I часть

1. Построить таблицу значений функций у = ах 2 , а>0.

a) y=0,5x 2b) y=x 2c) y=2x 2
аргументx0± 1± 2± 3значение a
функцияy=ax 2
(e1)y=0,5x 200,524,5a=0,5
(e2)y=x 20149a=1
(e3)y=2x 202818a=2

2. Построим на одном чертеже графики трех данных функция е1 – у=0,5х 2 – синим цветом; е2— у=х 2 – красным цветом; и е3 – у=2x 2 – зеленым цветом.

3.. Учащееся сравнивают положение графиков функции вида у = ах 2 (а>0) и отмечают чем похожи все три параболы:

а) они имеют одинаковую форму;
б) ветви парабол неограниченно стремятся ветвями вверх;
в) ветви всех парабол симметричны относительно оси ординат 0у;
г) все эти параболы имеют самую низкую общую точку (0; 0), т.е. функция имеет минимум.

4. Чем отличаются положения графиков функций вида функции у = ах 2 (а>0):
функция вида у=ах 2 (а>О) возрастает тем круче (а соответствующая парабола тем быстрее поднимается вверх), чем больше коэффициент при х 2

II часть

5. Сравнить графики двух функций вида у = ах 2 (например, у = 0,5 х 2 и у = – 0,5 х 2 ), у которых коэффициентами а являются противоположные числа 0,5 и – 0,5.

6. Построить таблицу значений функций у = 0,5х 2 и у = -0,5х 2

Абсцисса0±1±2±3±4
y=0,5x 2 (e1)00,521,58
y=-0,5x 2 (e1 1 )0-0,5-2-1,5-8

7. Достроим в той же таблице недостающий график функции у = -0,5х 2 (см. таблицу)

8. Сравнить положения графиков функции у = 0,5х 2 и y=-0,5x 2

а) точка О (0; 0) есть самая низшая точка параболы у = 0,5 х 2 и наибольшая параболы у=-0,5х 2
б) графики (e1 и e1 1 ) двух функций у = 0,5х 2 и у = – 0,5х 2 симметричны друг другу относительно оси абсцисс.

9. Чем отличаются положение графиков функций вида у=0,5x 2 ,у=-0,5х 2

Запомним важное правило:

Если в уравнении квадратичной функции у=ах 2 коэффициент, то парабола неограниченно стремится ветвями

Верно и обратное:

Если парабола стремится ветвями , то коэффициент a в уравнении квадратичной функции y=ax 2

y=0,5x 2l2

y=x 2l3

y=2x 2a>0

a

После прохождения всех способов построения графика функции у =ах 2 +bх+с переносом графика функции у=ах 2 можно провести урок по решению взаимно обратных задач: по заданному графику составить уравнение функции и обратные задачи – это по заданному уравнению функции у = ах 2 +bх+с построить её график. На этом же уроке необходимо завершить работу над матрицей “Взаимное расположение квадратной функции у=ах 2 +bх+с относительно оси абсцисс”.

Урок №10

Тема: Построение графика функций у=ах 2 +bх+с переносом графика функций у=ах 2

Цель:

  • Закрепление навыков учащихся по построению графиков функций вида у=ах 2 +bх+с, выполнение обратных задач, завершение работы над матрицей.
  • Формирование умения выделять существенные признаки и свойства функция вида у=ах 2 +bх+c и построение её графика
  • Воспитание положительного отношения к знаниям.

I. Устная работа

  1. Назовите основные свойства функции у=ах 2 ?
  2. Как можно записать квадратичную функцию?
  3. Что значит, построить график функции у=ax 2 +bx+c?
  4. Что нужно вычислять в первую очередь при построении графика функции у=ax 2 +bx+c?
  5. Сколько вы знаете способов их нахождения?

II. Выполнение заданий на чтение графиков

Задача: По заданному графику составить уравнение функции. (У доски работают трое учащихся, выполняют задания по трём заданным графикам).

Квадратные уравнения и квадратичные неравенства с параметрами

Дорогой друг! Если ты никогда не решал задач с параметрами – прочитай статьи «Что такое параметр» и «Графический способ решения задач с параметрами». Квадратные уравнения, а тем более неравенства с параметрами только на первый взгляд кажутся простыми. Чтобы уверенно решать их, надо знать определенные приемы. О некоторых мы расскажем.

Разберем сначала подготовительные задачи. А в конце – реальную задачу ЕГЭ.

1. Найдите все значения a, при которых уравнение не имеет действительных корней.

Всегда ли это уравнение является квадратным относительно переменной х? – Нет, не всегда. В случае, когда коэффициент при равен нулю, оно станет линейным.

Рассмотрим два случая – когда это уравнение квадратное и когда оно линейное.

Тогда уравнение примет вид 2 = 0. Такое уравнение не имеет действительных корней, что удовлетворяет условию задачи.

Уравнение будет квадратным. Квадратное уравнение не имеет действительных корней тогда и только тогда, когда его дискриминант отрицательный.

Если и – корни квадратного уравнения
, то по теореме Виета:

Решим первое неравенство системы

Квадратный трехчлен в левой части не имеет корней, так как дискриминант равен -32, то есть отрицателен. Поэтому неравенство будет выполняться для всех действительных значений .

Возведем второе уравнение системы в квадрат:

Из этих двух уравнений выразим сумму квадратов и .

Значит, сумму квадратов корней уравнения можно выразить через параметр

График функции — парабола, ее ветви направлены вверх, минимум будет достигаться в ее вершине. Найдем вершину параболы:

3) Найдите все значения , при каждом из которых все решения уравнения

Как и в первой задаче, уравнение является квадратным, кроме случая, когда . Рассмотрим этот случай отдельно

1) . Получим линейное уравнение

У него единственный корень, причем положительный. Это удовлетворяет условию задачи.

2) При уравнение будет квадратным. Нам надо, чтобы решения существовали, причем были положительными. Раз решения есть, то .

Покажем один из приемов решения квадратичных уравнений и неравенств с параметрами. Он основан на следующих простых утверждениях:

— Оба корня квадратного уравнения и положительны тогда и только тогда, когда их сумма положительна и произведение положительно.

Очевидно, что сумма и произведение двух положительных чисел также положительны. И наоборот – если сумма и произведение двух чисел положительны, то и сами числа положительны.

— Оба корня квадратного уравнения и отрицательны тогда и только тогда, когда их сумма отрицательна, а произведение положительно.

Корни квадратного уравнения и имеют разные знаки тогда и только тогда, когда их произведение отрицательно.

Сумма и произведение корней входят в формулировку теоремы Виета, которой мы и воспользуемся. Получим

Второе и третье неравенства имеют одинаковое решение . Решение первого неравенства:
.

С учетом пункта 1 получим ответ

4. При каких значениях параметра a уравнение

имеет единственное решение?

Уравнение является показательным, причем однородным. Мы умеем решать такие уравнения! Разделим обе части на .

Сделаем замену

Для того, чтобы исходное уравнение имело единственное решение, нужно, чтобы уравнение относительно t имело ровно один положительный корень.

1) В случае уравнение будет линейным

Значит, подходит. В этом случае уравнение имеет единственный положительный корень.

2) Если , уравнение будет квадратным.

Дискриминант является полным квадратом и поэтому всегда неотрицателен. Уравнение имеет либо один, либо два корня. В этом случае несложно найти корни в явном виде.

Один корень получился не зависящим от параметра, причем положительным. Это упрощает задачу.

Для того, чтобы уравнение имело единственный положительный корень, нужно, чтобы либо второй был отрицательным, либо равным нулю, либо чтобы корни совпадали. Рассмотрим все случаи.

Объединив все случаи, получим ответ.

И наконец – реальная задача ЕГЭ.

5. При каких значениях a система имеет единственное решение?

Решением квадратного неравенства может быть:

В каких случаях система двух квадратных неравенств имеет единственное решение:

1) единственная общая точка двух лучей-решений ( или интервалов-решений)

2) одно из неравенств имеет решение – точку, которая является решением второго неравенства

Рассмотрим первый случай.

Если является решением 1 и 2 уравнений, то является решением уравнения (вытекает из второго первое) ⇒ или

Если , при этом система примет вид:

Второй корень первого уравнения:

Второй корень второго первого:

Если , при этом система примет вид:

– бесконечно много решений, не подходит.

Рассмотрим второй случай.

– решением является точка, если – является решением второго неравенства.

– решением является точка, если – не является решением первого неравенства.


источники:

http://urok.1sept.ru/articles/563185

http://ege-study.ru/kvadratnye-uravneniya-i-kvadratichnye-neravenstva-s-parametrami/