Квадратные уравнения квадратный трехчлен дискриминант

Дискриминант

Дискриминантом квадратного трехчлена называют выражение \(b^<2>-4ac\), где \(a, b\) и \(c\) – коэффициенты данного трехчлена.

Например, для трехчлена \(3x^2+2x-7\), дискриминант будет равен \(2^2-4\cdot3\cdot(-7)=4+84=88\). А для трехчлена \(x^2-5x+11\), он будет равен \((-5)^2-4\cdot1\cdot11=25-44=-19\).

Дискриминант обозначается буквой \(D\) и часто используется при решении квадратных уравнений . Также по значению дискриминанта можно понять, как примерно выглядит график квадратичной функции (см. ниже).

Дискриминант и корни квадратного уравнения

Значение дискриминанта показывает количество корней квадратного уравнения:
— если \(D\) положителен – уравнение будет иметь два корня;
— если \(D\) равен нулю – только один корень;
— если \(D\) отрицателен – корней нет.

Это не надо учить, к такому выводу несложно прийти, просто зная, что квадратный корень из дискриминанта (то есть, \(\sqrt\) входит в формулу для вычисления корней квадратного уравнения: \(x_<1>=\) \(\frac<-b+\sqrt><2a>\) и \(x_<2>=\) \(\frac<-b-\sqrt><2a>\) . Давайте рассмотрим каждый случай подробнее.

Если дискриминант положителен

В этом случае корень из него – это некоторое положительное число, а значит \(x_<1>\) и \(x_<2>\) будут различны по значению, ведь в первой формуле \(\sqrt\) прибавляется, а во второй – вычитается. И мы имеем два разных корня.

Пример: Найдите корни уравнения \(x^2+2x-3=0\)
Решение:

Вычисляем дискриминант по формуле \(D=b^2-4ac\)

Найдем корни уравнения

Получили два различных корня из-за разных знаков перед \(\sqrt\)

На графике квадратичной функции положительный дискриминант будет означать пересечение функции с осью икс ровно в двух точках – корнях уравнения. И это логично. Вдумайтесь – если уравнение \(x^2+2x-3=0\) имеет корни \(x_<1>=1\) и \(x_<1>=-3\), значит при подстановке \(1\) и \(-3\) вместо икса, левая часть станет нулем. А значит, если те же самые единицу и минус тройку подставить в функцию \(y=x^2+2x-3\) получим \(y=0\). То есть, функция \(y=x^2+2x-3\) проходит через точки \((1;0)\) и \((-3;0)\) (подробнее смотри статью Как построить график функции ).

Если дискриминант равен нулю

А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.

Формулы корней выглядят так: \(x_<1>=\) \(\frac<-b+\sqrt><2a>\) и \(x_<2>=\) \(\frac<-b-\sqrt><2a>\) . И если дискриминант – ноль, то и корень из него тоже ноль. Тогда получается:

То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.

Пример: Найдите корни уравнения \(x^2-4x+4=0\)
Решение:

Вычисляем дискриминант по формуле \(D=b^2-4ac\)

Находим корни уравнения

Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.

На графике квадратичной функции нулевой дискриминант означает одну точку пересечения функции с осью икс. Все аналогично изложенному выше: два корня – две точки пересечения, один корень – одна. В частности, функция \(y=x^2-4x+4\) будет выглядеть вот так:

Если дискриминант отрицателен

В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.

Пример: Найдите корни уравнения \(x^2+x+3=0\)
Решение

Вычисляем дискриминант по формуле \(D=b^2-4ac\)

Находим корни уравнения

Оба корня содержат невычислимое выражение \(\sqrt<-11>\), значит, и сами не вычислимы

То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение \(x^2+x+3\) получился ноль.

Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.

Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!

Квадратные уравнения

Решение неполных квадратных уравнений
Выделение полного квадрата
Дискриминант
Разложение квадратного трехчлена на множители
Формула для корней квадратного уравнения
Прямая и обратная теоремы Виета

Квадратным трёхчленом относительно переменной x называют многочлен

ax 2 + bx + c ,(1)

где a, b и c – произвольные вещественные числа, причем

Квадратным уравнением относительно переменной x называют уравнение

ax 2 + bx + c = 0,(2)

где a, b и c – произвольные вещественные числа, причем

Полным квадратным уравнением относительно переменной x называют уравнение

где a, b и c – произвольные вещественные числа, отличные от нуля.

Неполными квадратными уравнениями называют квадратные уравнения следующих типов:

Решение неполных квадратных уравнений

Покажем, как решаются неполные квадратные уравнения на примерах.

Пример 1 . Решить уравнение

Пример 2 . Решить уравнение

2x 2 + 3x= 0 .(3)

Решение . Вынося в левой части уравнения (3) переменную x за скобки, перепишем уравнение в виде

x (2x+ 3) = 0 .(4)

Поскольку произведение двух сомножителей равно нулю тогда и только тогда, когда, или первый сомножитель равен нулю, или второй сомножитель равен нулю, то из уравнения (4) получаем:

Ответ : .

Пример 3 . Решить уравнение

Ответ : .

Пример 4 . Решить уравнение

3x 2 + 11 = 0 .(5)

Решение . Поскольку левая часть уравнения (5) положительна при всех значениях переменной x , а правая часть равна 0, то уравнение решений не имеет.

Ответ : .

Выделение полного квадрата

Выделением полного квадрата называют представление квадратного трёхчлена (1) в виде:

Для того, чтобы получить формулу (6), совершим следующие преобразования:

Формула (6) получена.

Дискриминант

Дискриминантом квадратного трёхчлена (1) называют число, которое обозначается буквой D и вычисляется по формуле:

D = b 2 – 4ac.(7)

Дискриминант квадратного трёхчлена играет важную роль, и от того, какой знак он имеет, зависят различные свойства квадратного трёхчлена.

Используя дискриминант, формулу (6) можно переписать в виде

Разложение квадратного трёхчлена на множители

Утверждение . В случае, когда , квадратный трёхчлен (1) разлагается на линейные множители. В случае, когда D , квадратный трехчлен нельзя разложить на линейные множители.

Доказательство . В случае, когда D = 0 , формула (8) и является разложением квадратного трехчлена на линейные множители:

(9)

В случае, когда D > 0 , выражение, стоящее в квадратных скобках в формуле (8), можно разложить на множители, воспользовавшись формулой сокращенного умножения «Разность квадратов»:

Таким образом, в случае, когда D > 0 , разложение квадратного трехчлена (1) на линейные множители имеет вид

В случае, когда D , выражение, стоящее в квадратных скобках в формуле (8), является суммой квадратов и квадратный трёхчлен на множители не раскладывается.

Замечание . В случае, когда D , квадратный трехчлен всё-таки можно разложить на линейные множители, но только в области комплексных чисел, однако этот материал выходит за рамки школьного курса.

Формула для корней квадратного уравнения

Из формул (9) и (10) вытекает формула для корней квадратного уравнения .

Действительно, в случае, когда D = 0 , из формулы (9) получаем:

Следовательно, в случае, когда D = 0 , уравнение (1) обладает единственным корнем, который вычисляется по формуле

(11)

В случае, когда D > 0 , из формулы (10) получаем:

Таким образом, в случае, когда D > 0 , уравнение (1) имеет два различных корня , которые вычисляются по формулам

(12)
(13)

Замечание 1 . Формулы (12) и (13) часто объединяют в одну формулу и записывают так:

(14)

Замечание 2 . В случае, когда D = 0 , обе формулы (12) и (13) превращаются в формулу (11). Поэтому часто говорят, что в случае, когда D = 0 , квадратное уравнение (1) имеет два совпавших корня , вычисляемых по формуле (11), а саму формулу (11) переписывают в виде:

(15)

Замечание 3 . В соответствии с материалом, изложенным в разделе «Кратные корни многочленов», корень (11) является корнем уравнения (1) кратности 2.

В случае, когда D = 0 , разложение квадратного трехчлена на линейные множители (9) можно переписать по-другому, воспользовавшись формулой (15):

ax 2 + bx + c =
= a (x – x1) 2 .
(16)

В случае, когда D > 0 , разложение квадратного трехчлена на линейные множители (10) с помощью формул (12) и (13) переписывается так:

ax 2 + bx + c =
= a (x – x1) (x – x2) .
(17)

Замечание 4 . В случае, когда D = 0 , корни x1 и x2 совпадают, и формула (17) принимает вид (16).

Прямая и обратная теоремы Виета

Раскрывая скобки и приводя подобные члены в правой части формулы (17), получаем равенство

Отсюда, поскольку формула (17) является тождеством, вытекает, что коэффициенты многочлена

равны соответствующим коэффициентам многочлена

Таким образом, справедливы равенства

следствием которых являются формулы

(18)

Формулы (18) и составляют содержание теоремы Виета (прямой теоремы Виета) .

Словами прямая теорема Виета формулируется так: — «Если числа x1 и x2 являются корнями квадратного уравнения (1), то они удовлетворяют равенствам (18)».

Обратная теорема Виета формулируется так: — «Если числа x1 и x2 являются решениями системы уравнений (18), то они являются корнями квадратного уравнения (1)».

Для желающих ознакомиться с примерами решений различных задач по теме «Квадратные уравнения» мы рекомендуем наше учебное пособие «Квадратный трехчлен».

Графики парабол и решение с их помощью квадратных неравенств представлены в разделе «Парабола на координатной плоскости. Решение квадратных неравенств» нашего справочника.

Разложение квадратного трёхчлена на множители

Алгоритм разложения квадратного трёхчлена на множители с помощью дискриминанта

Данный алгоритм является универсальным.

На входе: квадратный трёхчлен $ax^2+bx+c$

Задача: разложить трёхчлен на множители

Шаг 1. Находим дискриминант $D = b^2-4ac$

Шаг 2. Если $D \gt 0, x_1,2 = \frac<-b \pm \sqrt> <2a>$ и $ax^2+bx+c = a(x-x_1 )(x-x_2 )$

Если D = 0, $x_0 = — \frac<2a>$ и $ax^2+bx+c = a(x-x_0 )^2$

Если $D \lt 0$, разложение на множители невозможно.

Шаг 3. Работа завершена.

Алгоритм разложения квадратного трёхчлена на множители по теореме Виета

Данный алгоритм применяется в частных случаях.

Если один (или оба) корня квадратного уравнения целые, то полезным навыком становится разложение на множители «в уме», с помощью теоремы Виета.

Навык этот не простой, и если у вас сразу не получится, не расстраивайтесь.

Рассмотрим следующий трёхчлен: $x^2+8x+15$

Если корни трёхчлена существуют, то их произведение равно 15.

Прикинем «в уме» соответствующие пары натуральных чисел:

В трёхчлене $c \gt 0$, значит корни одного знака, и в построении b участвует сумма этих корней. Из пары (1;15) сумма 8 не выходит, а вот из пары (3;5) — получается.

Для выбранной пары (3;5) запишем разложение, пока без знаков:

Теперь видно, что знаки в скобках – два плюса:

Рассмотрим другой трёхчлен: $x^2+2x-35$

Пары натуральных чисел, дающие произведение 35:

В трёхчлене $c \lt 0$, значит корни разных знаков, и в построении b участвует разность этих корней. Из пары (1;35) разность 2 не выходит, а вот из пары (5;7) — получается.

Для выбранной пары (5;7) запишем разложение, пока без знаков:

Теперь видно, что 7 должно быть с плюсом, а 5 – с минусом:

Обобщим алгоритм разложения по теореме Виета.

На входе: приведенный квадратный трёхчлен $x^2+bx+c$

Задача: разложить трёхчлен на множители при гипотезе, что корни — целочисленные

Шаг 1. Записать все пары натуральных чисел (m;n), дающих в произведении c.

Шаг 2. Если $c \gt 0$, то из всех пар выбрать ту, сумма которой даёт b.

Если $c \lt 0$, то из всех пар выбрать ту, разность которой даёт b.

Если выбрать пару не удаётся, данный алгоритм не подходит, и нужно приступить к разложению с помощью дискриминанта.

Шаг 3. Для выбранной пары записать разложение без знаков в виде:

Сопоставляя левую и правую части, окончательно расставить знаки в скобках.

Шаг 4. Работа завершена.

Предложенный алгоритм позволяет не только раскладывать на линейные множители трёхчлены, но и находить их корни, т.е. решать соответствующие квадратные уравнения.

Не забывайте менять знаки при записи решений уравнения!

Решаем $x^2+8x+15 = 0$. Получаем (x+3)(x+5) = 0. Корни $x_1 = -3, x_2 = -5$.

Решаем $x^2+2x-35 = 0$. Получаем (x-5)(x+7) = 0. Корни $x_1 = 5, x_2 = -7$.

При некотором опыте, можно наловчиться раскладывать не только приведенные трёхчлены, например:

$$ 5x^2-14x-3 = (5x+1)(x-3), 3x^2+13x-10 = (3x-2)(x+5), $$

В этих случаях алгоритм усложняется за счёт дополнительных вариантов расстановки коэффициентов при переменной в скобках.

Примеры

Пример 1. Разложите квадратный трёхчлен с помощью дискриминанта:

$ D = 7^2-4 \cdot 2 \cdot (-4) = 49+32 = 81 = 9^2 $

$ x = \frac<-7 \pm 9> <4>= \left[ \begin x_1 = -4 \\ x_2 = \frac<1> <2>\end \right. $

Получаем: $2x^2+7x-4 = 2(x+4) \left(x- \frac<1> <2>\right)$

Можно также записать: $2x^2+7x-4 = (x+4)(2x-1)$

$ D = 20^2-4 \cdot 3 \cdot (-7) = 400+84 = 484 = 22^2 $

$x = \frac<-20 \pm 22> <6>= \left[ \begin x_1 = -7 \\ x_2 = \frac<1> <3>\end \right.$

Получаем: $3x^2+20x-7 = 3(x+7) \left(x-\frac<1> <3>\right)$

Можно также записать: $3x^2+20x-7 = (x+7)(3x-1)$

$D = 19^2-4 \cdot 4 \cdot (-5) = 361+80 = 441 = 21^2$

$ x = \frac<19 \pm 21> <8>= \left[ \begin x_1 = -\frac<1> <4>\\ x_2 = 5 \end \right.$

Получаем: $4x^2-19x-5 = 4 \left(x+ \frac<1> <4>\right)(x-5)$

Можно также записать: $4x^2-19x-5 = (4x+1)(x-5)$

$ D = (\sqrt<2>)^2-4 \cdot \frac<1> <2>= 2-2 = 0, x = \frac<\sqrt<2>> <2>$

Получаем: $x^2-\sqrt <2>x+ \frac<1> <2>= \left(x- \frac<\sqrt<2>> <2>\right)^2 $

Пример 2*. Разложите трёхчлены на множители подбором по теореме Виета:

Пары множителей: (1;12),(2;6),(3;4)

$c = 12 \gt 0 \Rightarrow$ выбираем из пар ту, что в сумме дает b = 7. Это пара (3;4).

Записываем разложение без знаков: $(x…3)(x…4) = x^2+7x+12$

Расставляем знаки, результат: $x^2+7x+12 = (x+3)(x+4)$

Пары множителей: (1;18),(2;9),(3;6)

$c = -18 \lt 0 \Rightarrow$ выбираем из пар ту, разность которой дает b = 3. Это пара (3;6).

Записываем разложение без знаков: $(x…3)(x…6) = x^2+3x-18$

Расставляем знаки, результат: $x^2+3x-18 = (x-3)(x+6)$

Пары множителей: (1;77),(7;11)

$c = -18 \lt 0 \Rightarrow$ выбираем из пар ту, разность которой дает b=4. Это пара (7;11).

Записываем разложение без знаков: $(x…7)(x…11) = x^2+4x-77$

Расставляем знаки, результат: $x^2+4x-77 = (x-7)(x+11)$

Одна пара множителей (1;3)

Возможные разложения с коэффициентом:

$c = -3 \lt 0$, в скобках разные знаки.

Перебираем четыре возможных варианта и получаем:

$$2x^2-x-3 = (2x+3)(x-1) = 2 \left(x+ \frac<3> <2>\right)(x-1)$$

Пример 3. Сократите дробь.

Разложение на множители проводим по формулам сокращенного умножения, с помощью дискриминанта или по теореме Виета.


источники:

http://www.resolventa.ru/spr/algebra/kv.htm

http://reshator.com/sprav/algebra/8-klass/razlozhenie-kvadratnogo-tryohchlena-na-mnozhiteli/