Квантовая физика уравнение для решения всего

Основные формулы по физике — КВАНТОВАЯ ФИЗИКА

Начало развития квантовой физики связано с решением немецким ученым Максом Планком проблемы излучения абсолютно черного тела. Необходимо знать гипотезу Планка о квантовании энергии осцилляторов и уяснить, что на основании формулы Планка могут быть получены законы Стефана- Больцмана и Вина.

Развитие гипотезы Планка привело к созданию представлений о квантовых свойствах света. Кванты света называются фотонами. С позиций квантовой теории света объясняется такое явление как фотоэффект. Здесь следует знать формулу Эйнштейна для фотоэффекта.

Дальнейшее развитие квантовой физики связано с построением теории строения атома. О сложном строении атома говорят исследования спектров излучения разряженных газов.

Таблица сновных формул квантовой физики

Физические законы, формулы, переменные

Формулы квантовой физики

Закон Стефана-Больцмана:
где R — энергетическая светимость (излучательность) абсолютно черного тела, т.е. энергия, испускаемая в единицу времени с единицы площади:
σ — постоянная Стефана-Больцмана:

Энергетическая светимость (излучательность) серого тела:
где α — коэффициент черноты.

Закон смещения Вина:
где λm — длина волны, на которую приходится максимум энергии излучения;
b — постоянная Вина :

Импульс фотона:
где λ — длина волны;
h — постоянная Планка:

Энергия фотона:
где ν — частота;
с — скорость света в вакууме:

Формула Эйнштейна для фотоэффекта:
где hν — энергия фотона, падающего на поверхность металла;
А — работа выхода электрона из металла;
— максимальная кинетическая энергия фотоэлектрона.

Красная граница фотоэффекта:
где λк — максимальная длина волны, при которой возможен фотоэффект;
νк — минимальная частота, при которой возможен фотоэффект.

или

Сериальные формулы спектра водородоподобного атома
где R — постоянная Ридберга R=1,097·10 7 м -1 ,
z — порядковый номер элемента;
Серия Лаймана m=1, n=2,3,4.
Серия Бальмера m=2, n=3,4,5.
Серия Пашена m=3, n=4,5,6.
Серия Брекета m=4, n=5,6,7. и т.д.

Длина волны де Бройля:

где р — импульс частицы.

В классическом приближении (при v Поделитесь ссылкой с друзьями:

Квантовая физика — основные понятия, формулы и определения с примерами

Содержание:

Квантовая физика:

Причиной возникновения квантовой физики является то, что в начале XX века в физике возник кризис — появились проблемы. Существующие классические теории, в том числе теория Максвелла, уже не могли решать научные проблемы физики.

Одна из них — это тепловое излучение. Тела, излучающее тепло, должны отдавать свое тепло окружающим телам и среде и прийти к термодинамическому равновесию, т.е. равенству температур. Это является основным принципом термодинамики. Однако при излучении, например Солнца, с температурой 6000 К, не происходит такого явления. Также энергия излучения одинакова во всех длинах волн и подчиняется закону распределения, независимого от конкретной температуры. Это означает, что доля энергии излучения, соответствующая каждой длине волны, оказывается разной. В этой зависимости основная максимальная энергия излучения зависит от температуры и изменяется по закону смещения Вина:

Здесь:

Закон смещения Вина утверждает, что длина волны , на которую приходится максимум энергии, обратно пропорциональна абсолютной температуре Т излучающего тела:
Например, максимальная энергия излучения Солнца приходится на зеленый свет = 470 нм). Это по закону Вина соответствует Т= 6300 К. Энергетическое распределение этого излучения разработал Релей-Жинс на основе закона классической статистической механики, согласно закону термодинамики — равномерного распределения по степени свободы энергии молекул. Он объяснял распределение существующее только на длинных волнах, а для коротких волн это объяснение противоречило результатам эксперимента.

Еще одна из научных проблем, возникших к началу XX века, — это объяснение линейности спектров излучения газов и паров металла. Открытие явления фотоэффекта, наличия давления света, рассеяния световых лучей на электронах и другие научные проблемы, которые классическая физика, в частности электромагнитная теория Максвелла, также не смогла объяснить.

Для решения этих проблем немецкий ученый М. Планк выдвинул новую противоречивую классической физике идею. Он представил себе, что излучения и поглощения нагретого тела не происходят непрерывно, а происходят отдельными порциями (квантами). Квант — это минимальная порция энергии поглощения или излучения телом.

Согласно теории Планка, энергия кванта прямо пропорциональна частоте света:

здесь: h — постоянная Планка, Планк объяснил, что излучение и поглощение света происходит прерывно, создал закон распределения энергии излучения по длине волны, который и решил накопившиеся научные проблемы.

Он также объяснил (на примере Солнца) условия существования излучающих тел и необязательность термодинамического равновесия.

Фотоэлектрический эффект

Фотоэлектрический эффект (сокращенно — фотоэффект) был открыт в 1887 году Г. Герцом и экспериментально изучен русским ученым А. Столетовым (независимо от Ф. Ленарда).

Внешний фотоэффект — это выход электронов из вещества под воздействием света.

Схема экспериментальной установки, используемой для изучения явления фотоэффекта, приводится на рис. 6.1.

Основа устройства состоит из стеклянного баллона с «окошком», изготовленного из кварца, имеющего два электрода: анод и катод. Внутри стеклянного баллона создастся вакуум, так как в вакууме электроны и другие частицы могут совершать прямолинейные движения.

Чтобы подавать напряжение (от 0 до U) электродам через потенциометр, источник тока соединен через удвоенный ключ К. Удвоенный ключ дает возможность изменять полюс источника тока и замыкать цепь.

Один из электродов — катод (в основном, катод из цезия) через кварцевое «окно» освещается монохроматическими волнами. При постоянной длине волны и постоянном световом потоке измеряется зависимость силы фототока от напряжения, приложенного к аноду.

На рис. 6.2 приводится типичный график зависимости силы фототока от напряжения. График 2 соответствует большему световому потоку, чем график 1. Здесь: — ток насыщения, — задерживающее напряжение, т.е. при подаче такого отрицательного напряжения фотоэлектроны с начальными скоростями не доходят до анода.

Из графика на рис. 6.2 видно, что при больших положительных значениях напряжения сила тока достигает насыщения. Т.е. все электроны, которые покидают катод, доходят до анода. Когда напряжение доходит до значения , фототок равняется нулю. Измеряя для данного катода значение задерживающего напряжения, можно определить максимальную кинетическую энергию фотоэлектронов:

Ф. Ленард на своих опытах показал, что задерживающий потенциал не зависит от интенсивности (светового потока) падающей волны, а линейно зависит от частоты падающего света (рис. 6.3).

На основе опытов открыли законы фотоэффекта:

  1. Максимальная кинетическая энергия фотоэлектронов не зависит от светового потока (интенсивности) и линейно зависит от частоты v падающего света (с увеличением v линейно увеличится ).
  2. Для каждого вещества существует минимальная частота , при которой происходит фотоэффект. Это называется красной границей фотоэффекта.
  3. Количество фотоэлектронов, вылетающих из катода за единицу времени, прямо пропорционально падающему на катод световому потоку (интенсивности) и не зависит от частоты.

Явление фотоэффекта — это явление без инерции, в момент приостановки светового потока тут же исчезает фототок, с поступлением света фототок появляется.

Теория фотоэффекта

Теория фотоэффекта обоснована в 1905 году А. Эйнштейном. Он, пользуясь гипотезами М. Планка, пришел к выводу, что электромагнитные волны тоже состоят из отдельных порций -квантов. Они позже начали называться фотонами.

По идее Эйнштейна, при взаимодействии фотона с веществом он свою энергию полностью отдает электрону. По закону сохранения энергии, часть этой энергии расходуется на выход электрона из вещества и остальная часть превращается в кинетическую энергию электрона:

Это называется уравнением Эйнштейна для фотоэффекта.

Здесь А — выполненная работа для выхода электрона из вещества. Если учесть, что максимальная кинетическая энергия электрона равна
уравнение Эйнштейна для фотоэффекта можно записать в следующем виде:

Данное уравнение для фотоэффекта выражает закон сохранения энергии для явления фотоэффекта. Этот закон объясняет факты, касающиеся фотоэффекта:

  1. максимальная кинетическая энергия фотоэлектронов линейно зависит от частоты и не зависит от интенсивности (светового потока) падающего луча;
  2. существование красной границы фотоэффекта, т.е.
  3. фотоэффект происходит без инерции. По уравнению Эйнштейна, количество фотоэлектронов, вылетающих из катода за 1 с, пропорционально количеству фотонов, падающих на эту площадь.

На основании уравнения Эйнштейна следует, что tga угла наклона графика зависимости задерживающего потенциала от частоты равен отношению постоянной Планка на заряд электрона (рис 6.3), т.е.

Это отношение даст возможность определять постоянную Планка экспериментальным путем. Такой эксперимент проведен в 1914 году Р. Милликеном, который определил постоянную Планка. Этот эксперимент позволил найти работу выхода фотоэлектрона:

Здесь: с — скорость света, — длина волны, соответствующая красной границе фотоэффекта.

Для катодов работа выхода измеряется в электрон-вольтах (эВ) Поэтому используется значение постоянной Планка, выраженное в эВ:

Среди щелочных металлов Na, К, Cs, Rb имеют малую работу выхода. Поэтому на практике для покрытия поверхности катода используются оксиды этих металлов и другие соединения. Например: работа выхода катода цезиевым оксидом А = 1,2 эВ, красная граница фотоэффекта, соответствующая этому Это широко используется для регистрации желтого — видимого света.

Внутренний фотоэффект

При облучении полупроводников световым излучением слабо связанные электроны поглощают фотоны и превращаются в свободные электроны. При этом в полупроводниках увеличивается концентрация свободных носителей заряда и электропроводимость полупроводника.

Появление свободных носителей заряда в полупроводниках в результате воздействия излучения называется внутренним фотоэффектом.

Созданная дополнительная электрическая проводимость в полупроводниках в результате воздействия излучения называется фотопроводимостью. Это применяется при производстве фотосопротивления. Фотосопротивление — это сопротивление, которое изменяется под воздействием света. В радиотехнике его называют фоторезистором.

Фотоны

По квантовой теории света, при поглощении и излучении светового излучения веществом свет проявляет себя как поток частиц. Эта частица света называется фотоном, или световым квантом. Энергия фотона равна: Фотон движется в вакууме со скоростью света с. Фотон не обладает массой покоя, т.е.

Используя формулу из теории относительности можно определить массу фотона при движении:

В большинстве случаев энергия фотона выражается не через

частоту, а через циклическую частоту: При этом используют

выражение: читается как «аш с черточкой». Значение

Рассмотрение света как потока частиц — фотонов считается корпускулярной теорией и это нельзя назвать как возврат в механику Ньютона. Ее законы движения подчиняются законам квантовой механики.

К началу XX века стало известно, что природа света имеет две природы. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), при взаимодействии с веществами проявляются его корпускулярные свойства (частицы) (фотоэффект, давление света и т.д.).

Эти свойства стали называть корпускулярно-волновым дуализмом. Позже науке стало известно, что потоки электронов, протонов, нейтронов тоже имеют волновые свойства.

На этой основе получили объяснение процессы излучения и поглощения света веществом, линейных спектров, явления фотоэффекта, давления света и другие.

Импульс фотона и давление света

Из-за того что фотон всегда находится в движении, он имеет импульс:Если учесть вышеприведенное выражение, то импульс фотона равняется

Учитывая формулу энергию и импульс фотона выражаем через

длину волны:

Если на поверхность тела попадает поток фотонов, тогда эти фотоны передают ей импульс и образуется давление света.

Согласно электромагнитной теории Максвелла, когда свет падает на какую-либо поверхность, на нее действует давление. Однако это давление имеет очень маленькое значение. По расчетам Максвелла, солнечный свет, падающий на Землю, создает силу давления 0,48 мкН на абсолютно черной части площадью 1 . Регистрировать такую маленькую силу на открытом земном участке очень сложно.

Первый раз давление света экспериментально измерил русский ученый П.Н. Лебедев в 1900 году. Для этого он изготовил очень легкое устройство. Одну или несколько пар легких крылышек, одно блестящее, а другое затемненное, прикрепили к веревке. Опыт показывает, что блестящее хорошо отражает свет, а затемненное хорошо поглощает.

Систему поместили в сосуд, из которого выкачали воздух. Она представляла собой чувствительные крутильные весы. Поворот системы наблюдается через зеркало и трубку, прикрепленную к веревке. По углу поворота системы определяется сила давления света, действующая на систему.

Результаты Лебедева подтвердили электромагнитную теорию Максвелла. Измеренное давление света имело разницу на 20% от теоретически вычисленного значения давления света. Позже, в 1923 году, в проведенных опытах Герлаха полученный результат по давлению света от теоретических вычислений отличался на 2%.

Формулу давления, оказывающего на поверхность потоком фотонов, можно вывести следующим образом. Сила действия в результате

столкновения фотона с поверхностью равна : Если ударится

N шт. фотонов, тогда

Здесь: — изменение импульса фотона. Оно будет равно А(тс) = 2тс, если поверхность идеально прозрачная, если абсолютно черная, то будет равно

Тогда давление, оказанное на абсолютно черную поверхность,

Если поверхность блестящая, то

Если в учесть, что

Здесь энергия света (волны), падающая за единицу времени на единицу площади, называется интенсивностью света (волны).

Тогда Эта формула Максвелла по определению давления,

оказываемого на поверхность вещества (абсолютна черная поверхность) электромагнитными волнами.

Из приборов, работающих на основе явления фотоэффекта, самое широко применяемое — это фотосопротивление.

Основу фотосопротивления составляет полупроводник, чувствительный к свету, имеющий относительно большую площадь. Его схема и условное обозначение приводится на рис. 6.4. свет

При комнатной температуре сопротивление полупроводника очень большое и через него протекает очень маленький ток. С падением на него света увеличится концентрации свободных носителей заряда, сопротивление уменьшится. Сила тока растет.

Преимущества фотосопротивления: высокая фоточувствительность, долгосрочная эффективная служба, маленький размер, несложная технология изготовления, возможность изготовления из полупроводниковых материалов, работающих на одинаковых длинах волны.

К недостаткам можно отнести: первое — изменение сопротивления линейно не зависит от светового потока, второе — чувствительность к температуре. В том числе имеет большую инертность, появляется ряд проблем при использовании на высоких частотах.

Фотоэлементы, основанные на внутреннем фотоэффекте

Основанные на внутреннем фотоэффекте полупроводниковые фотоэлементы с переходами применяются для превращения световой энергии в электрическую. Полупроводник — кремниевые фотоэлементы, позволяющие превращать солнечную энергию в электрическую, широко применяются и получили название солнечные батареи.

Основу солнечней батареи составляют кремниевые пластинки «-типа, со всех сторон окруженные тонким слоем (1-2 мкм) кремния р-типа (рис. 6.5).

При падении света на поверхность элемента в слое р-типа появляется элект-ронно-дырочная пара, которая, не успевая рекомбинировать, переходит в область перехода. В области р-п перехода происходит разделение зарядов. Под действием созданного поля электроны движутся в сторону области -типа, а дырки — в сторонутипа. Созданная ЭДС в среднем будет до 0,5 В. Такой элемент с площадью 1 , при подсоединении к потребителю, дает ток до 25 мА.

Чувствительность кремниевых фотоэлементов для зеленых лучей максимальна, т.е. приходится на максимальную часть солнечного света. Поэтому они имеют высокое КПД, обычно 11-12%, а в материалах высокого качества доходит до 21-22%.

Солнечные батареи служат, кроме солнечных электростанций на Земле, на космических кораблях и искусственных спутниках Земли в качестве источника электрической энергии.

Одним из широко применяемых приборов, работа которых основана на внутреннем фотоэффекте, является световой диод (полупроводниковые лазеры). Светодиоды основаны на действии одного или нескольких переходов. Когда через них проходит электрический ток, они излучают свет. В материале этого диода количество и подвижность электронов будет больше, чем дырок. При переходе электронов из области в область р происходит рекомбинация с дырками. Излишки энергии излучаются в виде световой волны.

В зависимости от типа материала полупроводника цвет излучения будет разный.

Академиком АН Узбекистана М. Саидовым созданы около 10 видов светодиодов и разработаны теория и технология изготовления различных светодиодов.

Если раньше фотоприборы использовались только в кинотехнике и фотоэлектронных умножителях, то сегодня они широко применяются в осветителях, робототехнике, автоматике, фотометрии, приборах ночного видения, солнечных электростанциях и научных исследованиях, проводимых с помощью светового излучения.

В целях широкого использования солнечной энергии в Узбекистане в 1993 году организовали научно-производственного объединения «Физика-Солнца» и проводятся широкомасштабные научно-исследовательские и прикладные работы.

Пример решения задачи

Найдите длину волны света, падающего на поверхность, если работа выхода электрона из металла а кинетическая энергия электрона

Дано: Найти:

Формула:

Решение:

Ответ:

Итоги:

Закон смещения Вина: Длина волны на которую приходится максимум излучения тела, обратно пропорциональна абсолютной температуре — постоянная Вина.

Квант: Минимальная часть энергии излучения или поглощения телом.

Энергия кванта :Энергия кванта прямо пропорциональна частоте света:

Внешний фотоэффект: Выход электронов из вещества под воздействием света.

Задерживающее напряжение :Отрицательное тормозящее напряжение, при котором фотоны не доходят до анода.

  1. Максимальная кинетическая энергия фотоэлектронов не зависит от светового потока (интенсивности) и линейно зависит от частоты v падающего луча.
  2. Для каждого вещества существует минимальная частота при которой происходит фотоэффект. Это называется красной границей фотоэффекта.
  3. Количество фотоэлектронов, вылетающих из катода за единицу времени, прямо пропорционально падающему на катод световому потоку (интенсивности) и не зависит от частоты.

Максимальная кинетическая энергия электронов :
Формула Эйнштейна для фотоэффекта :
Красная граница фотоэффекта :Красная граница фотоэффекта Здесь — частота и длина волны, соответствующие красной границе фотоэффекта.

Внутренний фотоэффект: Увеличение концентрации свободных носителей заряда в полупроводниках под воздействием света.

Фотон :Квант или частица света. Его масса покоя
Энергия фотона: Энергия фотона скорость движения с, импульс
Давление света : — интенсивность света. с
Фотосопротивление -фоторезистор :Резистор, у которого под воздействием света уменьшается сопротивление.

Солнечные батареи: Полупроводниковый фотоэлемент с переходом основан на внутреннем фотоэффекте, который превращает световую энергию в электрическую.

Лекции по предметам:

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Квантовая физика. Изменение физических величин в процессах. Установление соответствия

Теория к заданию 21 из ЕГЭ по физике

Гипотеза Планка о квантах

Гипотеза Планка — предположение, что атомы испускают электромагнитную энергию (свет) не непрерывно, а отдельными порциями — квантами.

Энергия каждой порции пропорциональна частоте излучения:

где $h=6.63·10^<-34>$ $Дж·с$ — постоянная Планка, $ν$ — частота света.

Постоянная Планка (квант действия) — фундаментальная физическая константа. Введена М. Планком в 1900 г. Наиболее точное значение постоянной Планка $h = 6.626176(36) · 10^<-34>$ $Дж·с$. Чаще пользуются постоянной $h=/<2π>=1.0545887(57)·10^<-34>$ $Дж·с$, также называемой постоянной Планка. Формула $p↖<→>=><√<1-<υ^2>/>$ — это вторая из простых великих формул физики (первая — формула Эйнштейна, связывающая энергию покоя тела с его массой). После открытия Планка начала развиваться квантовая теория.

Фотоны. Энергия и импульс фотона

Фотон (обозначение — $γ$) — элементарная частица, квант электромагнитного поля.

Развивая идею Планка об излучении электромагнитных волн квантами, А.Эйнштейн ввел гипотезу, согласно которой электромагнитное излучение само состоит из таких квантов, позднее названных фотонами.

Это свойство света было названо корпускулярным.

Масса покоя фотона равна нулю, следовательно, согласно СТО скорость его равна скорости света $с$, а энергия:

Из $E=hν=/<λ>=pc$ находим выражение для импульса:

Импульс фотона направлен по световому лучу. Чем больше частота, тем больше энергия и импульс фотона и тем отчетливее выражены корпускулярные свойства света.

Фотоэффект

Фотоэффект — испускание электронов веществом при поглощении им квантов электромагнитного излучения (фотонов).

Фотоэффект был открыт в 1887 г. Г. Герцем, который установил, что длина искры в разряднике увеличивается при попадании на его металлические электроды света от искры второго разрядника. Первые исследования фотоэффекта были выполнены русским ученым А. Г. Столетовым (1888 г.). Ф. Ленард и Дж. Томсон (1889 г.) доказали, что при фотоэффекте испускаются электроны.

Опыты Столетова. Законы фооэффекта

Схема опытов и прибор Столетова по наблюдению фотоэффекта представлены на рисунке. Здесь $С$ — два металлических диска, установленных параллельно друг другу (один — латунная или железная металлическая сетка, второй диск — сплошной). Диски соединены между собой проволокой, в которую введены гальваническая батарея $В$ и чувствительный гальванометр с большим сопротивлением ($5212$ Ом), $А$ — источник света (лампа с вольтовой дугой). Таким образом, две металлические пластины представляют собой конденсатор, причем металлическая сетка является положительной обкладкой конденсатора. Свет от дуги $А$ через сетку попадает на отрицательно заряженную сплошную металлическую пластину. Из опытов Столетова следовало, что фототок через гальванометр сильнее всего растет при освещении ультрафиолетовыми лучами, сила фототока пропорциональна интенсивности освещения, и под действием света освобождаются только отрицательные заряды.

При изучении фотоэффекта строят зависимость тока $I$ от напряжения $U$, подаваемого к электродам, один из которых (исследуемый фотокатод) освещается светом. Из полученной зависимости $I(U)$ следует, что при $U=0$ ток не равен нулю, а для того, чтобы ток стал равным нулю, необходимо подать некоторое напряжение обратной полярности (к освещенному электроду «+», к неосвещенному — «—»), которое называется задерживающим напряжением $U_з$ и определяется максимальной кинетической энергией вылетающих электронов: $/<2>=eU_з$.

В процессе исследования фотоэффекта были установлены следующие закономерности.

  1. Количество электронов, вырываемых светом с поверхности металла за $1$ с, прямо пропорционально поглощаемой за это время энергии световой волны.
  2. Скорость электронов, вылетающих из тела при фотоэффекте, определяется его частотой $ν$ и не зависит от интенсивности.
  3. Для каждого вещества существует предельная наименьшая частота света $ν_$ (красная граница фотоэффекта), при которой возможен фотоэффект. Излучение с частотой $ν E_1$. Интенсивность поглощенного излучения пропорциональна концентрации $n_1$ атомов, находящихся в основном состоянии.

2. Спонтанное излучение. В отсутствие внешних полей или столкновений с другими частицами электрон, находящийся в возбужденном состоянии, через время порядка $10^<-8>-10^<-7>$
с спонтанно (самопроизвольно) возвращается в основное состояние, излучая фотон.

Спонтанное излучение — это излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое.

Спонтанное излучение различных атомов происходит некогерентно, т. к. каждый атом начинает и заканчивает излучать независимо от других.

3. Индуцированное излучение. В 1917 г. Эйнштейн предсказал, что возбужденный атом может излучать под действием падающего на него света.

Индуцированное (вынужденное) излучение — излучение атома, возникающее при переходе на более низкий энергетический уровень под действием внешнего электромагнитного излучения.

Интенсивность индуцированного излучения пропорциональна концентрации щ атомов, находящихся в возбужденном состоянии. При этом световая волна, возникающая при индуцированном излучении, имеет ту же частоту, поляризацию, фазу и направление распространения, что и падающая на атом волна. Это означает, что интенсивность падающего излучения увеличивается, т. е. возникает оптическое усиление.

Принцип действия лазера

В 1939 г. российский физик В. А. Фабрикант наблюдал экспериментально усиление электромагнитных волн (оптическое усиление) в результате процесса индуцированного излучения. Российские ученые Н. Г. Басов и А. М. Прохоров и американский физик Ч. Таунс, создавшие в 1954 г. квантовый генератор излучения, работавший в сантиметровом диапазоне, были удостоены в 1964 г. Нобелевской премии по физике. Первый лазер, работающий на кристалле рубина в видимом диапазоне, был создан в 1960 г. американским физиком Т. Мейманом.

Усиление излучения, падающего на среду, будет происходить тогда, когда число частиц на возбужденном уровне $n_2$ превысит число частиц на основном уровне энергии: $n_2 > n_1$. Такое состояние системы называется инверсной населенностью. В состоянии термодинамического равновесия, когда система занимает основное состояние с наименьшей энергией $Е_1$, т. е. когда $n_1 > n_2$, усиления света не будет.

Инверсная населенность энергетических уровней — неравновесное состояние среды, при котором концентрация атомов в возбужденном состоянии больше, чем концентрация атомов в основном состоянии.

Однако спонтанные переходы препятствуют накоплению атомов в возбужденном состоянии. Этим можно пренебречь, если возбужденное состояние метастабильно.

Метастабильным называется возбужденное состояние электрона в атоме, в котором он может находиться гораздо дольше (например, $10^<-3>$ с), чем в обычном возбужденном состоянии ($10^<-8>$ с).

На этом основан принцип действия рубинового лазера. Рубин, используемый в качестве активного элемента в лазере, представляет собой монокристалл $А1_2O_3$, в котором часть ионов алюминия замещена ионами $Сг^<3+>$.

С помощью лампы-вспышки (оптической накачки) ионы хрома переводятся из основного состояния $Е_1$ в возбужденное — $Е_3$. Через $10^<-8>$ с ионы, передавая часть энергии кристаллической решетке, переходят из возбужденного состояния $Е_3$ в метастабильное состояние $Е_2 n_1$) этого уровня. Случайный фотон с энергией $hν=E_2-E_1$ может вызвать лавину индуцированных когерентных фотонов. Индуцированное излучение, распространяющееся вдоль оси цилиндрического монокристалла рубина, многократно отражается от его торцов и быстро усиливается.

Один из торцов рубинового стержня делают зеркальным, а другой — частично прозрачным. Через него выходит мощный импульс когерентного монохроматического излучения красного цвета с длиной волны $694.3$ нм.

В настоящее время существует много различных типов и конструкций лазеров.

Лазерное излучение обладает следующими особенностями:

  1. исключительной монохроматичностью и когерентностью;
  2. пучок света лазера имеет очень малый угол расхождения (около $10^<-5>$рад);
  3. лазер — наиболее мощный искусственный источник света. Напряженность электрического поля в электромагнитной волне, излучаемой лазером, превышает напряженность поля внутри атома.

Состав ядра. Нуклонная модель Гейзенберга-Иваненко

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения а-частиц через вещество. Оказалось, что почти вся масса атома ($99.95%$) сосредоточена в ядре. Размер атомного ядра имеет порядок величины $10^<-13>-10^<-12>$ см, что в $10 000$ раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода, выбитых $α$-частицами из ядер других элементов (1919—1920 гг.), привели ученого к представлению о протоне. Термин протон был введен в начале 20-х гг XX ст.

Протон (от protos — первый, символ $p$) — стабильная элементарная частица, ядро атома водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона $e=1.6·10^<-19>$ Кл. Масса протона в $1836$ раз больше массы электрона. Масса покоя протона $m_p=1.6726231·10^<-27>кг=1.007276470 а.е.м.$

Второй частицей, входящей в состав ядра, является нейтрон.

Нейтрон (от лат. neuter — ни тот, ни другой, символ $n$) — это элементарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в $1839$ раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона $m_n=1.6749286·10^<-27>кг=1.0008664902 а.е.м.$ и превосходит массу протона на $2.5$ массы электрона. Нейтрон, наряду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия $α$-частицами. Возникающее при этом излучение с большой проникающей способностью (преодолевало преграду из свинцовой пластины толщиной $10-20$ см) усиливало свое действие при прохождении через парафиновую пластину. Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это $γ$-кванты. Большая проникающая способность новых частиц, названных нейтронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании $α$-частиц в ядра бериллия происходит следующая реакция:

Здесь $↙<0>↖<1>n$ — символ нейтрона; заряд его равен нулю, а относительная атомная масса приблизительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время $

15$ мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протоннонейтронную (нуклонную) модель ядра. Согласно этой модели, ядро состоит из протонов и нейтронов. Число протонов $Z$ совпадает с порядковым номером элемента в таблице Д. И. Менделеева.

Заряд ядра $Q$ определяется числом протонов $Z$, входящих в состав ядра, и кратен абсолютной величине заряда электрона $e$:

Число $Z$ называется зарядовым числом ядра или атомным номером.

Массовым числом ядра $А$ называется общее число нуклонов, т. е. протонов и нейтронов, содержащихся в нем. Число нейтронов в ядре обозначается буквой $N$. Таким образом, массовое число равно:

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов.

Изотопы (от греч. isos — равный, одинаковый и topos — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число протонов ($Z$) и различное число нейтронов ($N$).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного элемента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами $Z$ и $N$. Общее обозначение нуклидов имеет вид $↙↖X_N$, где $X$ — символ химического элемента, $A=Z+N$ — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и произошло их название. По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (и почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемента определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода $↖<1>H$ — протий, $↖<2>H$ — дейтерий, $↖<3>H$ — тритий столь сильно отличаются по массе, что и их физические и химические свойства различны. Дейтерий стабилен (т. е. не радиоактивен) и входит в качестве небольшой примеси ($1:4500$) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода. Она при нормальном атмосферном давлении кипит при $101.2°$С и замерзает при $+3.8°$С. Тритий $β$-радиоактивен с периодом полураспада около $12$ лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактивные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами $235$ и $238$. Изотоп $↙<92>↖<235>U$ составляет всего $<1>/<140>$ часть от более распространенного $↙<92>↖<238>U$.

Энергия связи нуклонов в ядре. Ядерные силы

Поскольку протоны в ядре имеют одинаковый положительный заряд, они отталкиваются. Для того чтобы удержать их вместе, должны существовать силы, намного превышающие силы электрического и гравитационного взаимодействия. Эти силы называются ядерными силами. Они в $100$ раз превосходят электрические (кулоновские) силы. Это самые мощные силы из всех, которыми располагает природа. Поэтому взаимодействие ядерных частиц относят к сильным взаимодействиям — особому типу взаимодействия, присущему большинству элементарных частиц наряду с электромагнитными взаимодействиями. Ядерные силы заметно проявляются лишь на расстояниях порядка $10^<-13>-10^<-12>$ см, равных по порядку величины размерам ядра, что показали опыты Резерфорда по рассеянию $α$-частиц ядрами.

Устойчивость атомного ядра характеризуется энергией связи ($Е_<св>$). Энергия связи — это энергия, которую надо затратить, чтобы расщепить ядро. Ее принято выражать в мегаэлектронвольтах (МэВ) ($1 МэВ = 1.6·10^<-13>Дж$).

Под энергией связи ядра понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основании закона сохранения энергии можно также утверждать, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц. Энергия связи атомных ядер очень велика. Определить ее можно, применяя соотношение Эйнштейна между массой и энергией: $E=mc^2$.

Удельной энергией связи называют энергию связи, приходящуюся на один нуклон ядра. Ее определяют экспериментально. Зависимость $Е_<уд>$ от массового числа $А$ приведена на рисунке. Как видно из рисунка, удельная энергия связи примерно постоянна (не считая самых легких ядер) и равна $8$ МэВ/нуклон. Слабый максимум ($8.6$ МэВ) приходится на элементы с массовыми числами от $50$ до $60$, т. е. на железо и близкие к нему по порядковому номеру элементы. Ядра этих элементов наиболее устойчивы.

У тяжелых ядер удельная энергия связи уменьшается за счет растущей с увеличением $Z$ кулоновской энергии отталкивания протонов. Кулоновские силы стремятся разорвать ядро.

Дефект массы

Точнейшие измерения показывают, что масса покоя ядра $М_я$ всегда меньше суммы масс покоя составляющих ее протонов и нейтронов: $М_я 100$.

Деление ядер урана было обнаружено в 1939 г. Ганом и Штрасманом, которые однозначно доказали, что при бомбардировке нейтронами ядер урана $U$ появляются радиоактивные ядра с массами и зарядами, примерно в два раза меньшими, чем масса и заряд ядра $U$. В том же году Л. Мейтнер и О. Фриш ввели термин «деление ядер» и отметили, что при этом выделяется огромная энергия, а Ф. Жолио-Кюри и Э. Ферми одновременно обнаружили, что при делении происходит испускание нескольких нейтронов (нейтроны деления). На основании этого была выдвинута идея самоподдерживающейся цепной реакции деления и использования деления ядер в качестве источника энергии. Основой современной ядерной энергетики служит деление ядер $↙<92>↖<235>U$ и $↖<239>Pu$ поддействиемнейтронов.

Деление ядра возможно благодаря тому, что масса покоя тяжелого ядра больше суммы масс покоя осколков, возникающих при делении. Такой процесс энергетически выгоден.

Механизм деления ядра объясняется на основе капельной модели, согласно которой сгусток нуклонов напоминает капельку заряженной жидкости. Ядро удерживают от распада ядерные силы притяжения, большие, чем силы кулоновского отталкивания, действующие между протонами и стремящиеся разорвать ядро.

Ядро $↙<92>↖<235>U$ имеет форму шара. После поглощения нейтрона оно возбуждается и деформируется, приобретая вытянутую форму, и растягивается до тех пор, пока силы отталкивания между половинками вытянутого ядра не станут больше сил притяжения, действующих в перешейке. После этого ядро разрывается на две части. Осколки под действием кулоновских сил отталкивания разлетаются со скоростью, равной $<1>/<30>$ скорости света.

Испускание нейтронов в процессе деления, о котором говорилось выше, объясняется тем, что относительное число нейтронов (по отношению к числу протонов) в ядре растет с увеличением атомного номера, и для образовавшихся при делении осколков число нейтронов оказывается большим, чем это допустимо для ядер атомов с меньшими номерами. г

Деление обычно происходит на осколки неравной массы. Эти осколки радиоактивны. После серии $β$-распадов в конце концов получаются стабильные ионы.

Кроме вынужденного, описанного выше, существует и спонтанное деление ядер урана, открытое в 1940 г. советскими физиками Г. Н. Флеровым и К. А. Петржаком. Период полураспада для спонтанного деления равен $10^<16>$ лет, что в два миллиона раз больше периода полураспада при $α$-распаде урана.

Синтез ядер осуществляется в термоядерных реакциях. Термоядерные реакции — это реакции слияния легких ядер при очень высокой температуре. Выделяющаяся при слиянии (синтезе) энергия оказывается наибольшей при синтезе легких элементов, обладающих минимальной энергией связи. При соединении двух легких ядер, например, дейтерия и трития, образуется более тяжелое яро гелия с большей энергией связи:

При таком процессе ядерного синтеза выделяется значительная энергия ($17.6$ Мэв), равная разности энергий связи тяжелого ядра $↙<2>↖<4>Не$ и двух легких ядер $↙<2>↖<1>Н$ и $↙<1>↖<3>Н$. Образующийся при реакциях нейтрон приобретает $70%$ этой энергии. Сравнение энергии, приходящейся на один нуклон в реакциях ядерного деления ($0.9$ Мэв) и синтеза ($17.6$ Мэв), показывает, что реакция синтеза легких ядер энергетически более выгодна, чем реакция деления тяжелых.

Слияние ядер происходит под действием сил ядерного притяжения, поэтому они должны сблизиться до расстояний, меньших $10^<-14>$ м, на которых действуют ядерные силы. Этому сближению препятствует кулоновское отталкивание положительно заряженных ядер. Оно может быть преодолено только за счет большой кинетической энергии ядер, превышающей энергию их кулоновского отталкивания. Соответствующие расчеты показывают, что кинетическая энергия ядер, необходимая для реакции синтеза, может быть достигнута при температурах порядка сотен миллионов градусов, поэтому эти реакции называются термоядерными.

Термоядерный синтез — реакция, в которой при высокой температуре, большей $107$ К, из легких ядер синтезируются более тяжелые.

Термоядерный синтез — источник энергии всех звезд, в том числе, и Солнца.

Основным процессом, при котором происходит освобождение термоядерной энергии в звездах, является превращение водорода в гелий. За счет дефекта массы в этой реакции масса Солнца уменьшается каждую секунду на $4$ млн тонн.

Большую кинетическую энергию, необходимую для термоядерного синтеза, ядра водорода получают в результате сильного гравитационного притяжения к центру звезды. Затем при слиянии ядер гелия образуются и более тяжелые элементы.

Термоядерные реакции играют решающую роль в эволюции химического состава вещества во Вселенной. Все эти реакции сопровождаются выделением энергии, излучаемой звездами в виде света на протяжении миллиардов лет.

Осуществление управляемого термоядерного синтеза предоставило бы человечеству новый, практически неисчерпаемый источник энергии. И дейтерий, и тритий, необходимые для его осуществления, вполне доступны. Первый содержится в воде морей и океанов (в количестве, достаточном для использования в течение миллиона лет), второй может быть получен в ядерном реакторе при облучении жидкого лития (запасы которого огромны) нейтронами:

Одним из важнейших преимуществ управляемого термоядерного синтеза является отсутствие радиоактивных отходов при его осуществлении (в отличие от реакций деления тяжелых ядер урана).

Главным препятствием на пути осуществления управляемого термоядерного синтеза является невозможность удержания высокотемпературной плазмы с помощью сильных магнитных полей в течение $0.1-1$ с. Однако существует уверенность в том, что рано или поздно термоядерные реакторы будут созданы.

Пока же удалось осуществить лишь неуправляемую реакцию синтеза взрывного типа в водородной бомбе.

Цепные ядерные реакции

Ядерные цепные реакции — это ядерные реакции, в которых частицы, вызывающие их, образуются и как продукты этих реакций. Такой реакцией является деление урана и некоторых трансурановых элементов (например, $↖<239>Рu$) под действием нейтронов. Впервые она была осуществлена Э. Ферми в 1942 г. После открытия деления ядер У. Зинн, Л. Силард и Г. Н. Флеров показали, что при делении ядра урана $U$ вылетает больше одного нейтрона: $n+U→A+B+ν$. Здесь $А$ и $В$ — осколки деления с массовыми числами $А$ от $90$ до $150$, $ν$ — число вторичных нейтронов.

Коэффициент размножения нейтронов. Для течения цепной реакции необходимо, чтобы среднее число освобожденных нейтронов в данной массе урана не уменьшалось со временем, или чтобы коэффициент размножения нейтронов $k$ был больше или равен единице.

Коэффициентом размножения нейтронов называют отношение числа нейтронов в каком-либо поколении к числу нейтронов предшествующего поколения. Под сменой поколений понимают деление ядер, при котором поглощаются нейтроны старого поколения и рождаются новые нейтроны.

Если $k≥1$, то число нейтронов увеличивается с течением времени или остается постоянным, и цепная реакция идет. При $k


источники:

http://www.evkova.org/kvantovaya-fizika

http://examer.ru/ege_po_fizike/teoriya/kvantovaya_fizika_izmenenie_fizicheskih