Квантовая модель строения атома уравнение шредингера

Атомная модель Шредингера: характеристики, постулаты

Атомная модель Шредингера: характеристики, постулаты — Наука

Содержание:

В Атомная модель Шредингера Она была разработана Эрвином Шредингером в 1926 году. Это предложение известно как квантово-механическая модель атома, и оно описывает волновое поведение электрона.

Шредингер предположил, что движение электронов в атоме соответствует дуальности волна-частица, и, следовательно, электроны могут двигаться вокруг ядра как стоячие волны.

Шредингер, которому в 1933 году была присуждена Нобелевская премия за вклад в теорию атома, разработал одноименное уравнение для вычисления вероятности того, что электрон находится в определенном положении.

Характеристики атомной модели Шредингера

-Опишите движение электронов как стоячие волны.

-Электроны движутся постоянно, то есть они не имеют фиксированного или определенного положения в атоме.

-Эта модель не предсказывает местонахождение электрона и не описывает путь, который он проходит внутри атома. Он только устанавливает зону вероятности для обнаружения электрона.

-Эти вероятностные области называются атомными орбиталями. Орбитали описывают поступательное движение вокруг ядра атома.

-Эти атомные орбитали имеют разные уровни и подуровни энергии, и их можно определить между электронными облаками.

-Модель не рассматривает стабильность ядра, она относится только к объяснению квантовой механики, связанной с движением электронов внутри атома.

Эксперимент

Атомная модель Шредингера основана на гипотезе де Бройля, а также на предыдущих атомных моделях Бора и Зоммерфельда.

Бройль предположил, что точно так же, как волны обладают свойствами частиц, частицы обладают свойствами волн, имеющих соответствующую длину волны. То, что в то время вызвало большие ожидания, поскольку сам Альберт Эйнштейн поддерживал его теорию.

Однако у теории де Бройля был недостаток, который заключался в том, что смысл самой идеи был не очень хорошо понят: электрон может быть волной, но чего? Именно тогда фигура Шредингера дает ответ.

Для этого австрийский физик опирался на эксперимент Юнга и на основе своих собственных наблюдений разработал математическое выражение, носящее его имя.

Вот научные основы этой атомной модели:

Эксперимент Юнга: первая демонстрация дуальности волна-частица

Гипотеза де Бройля о волновой и корпускулярной природе материи может быть продемонстрирована с помощью эксперимента Юнга, также известного как эксперимент с двумя щелями.

Английский ученый Томас Янг заложил основы атомной модели Шредингера, когда в 1801 году провел эксперимент по проверке волновой природы света.

Во время экспериментов Янг разделил излучение луча света, проходящего через небольшое отверстие в камере наблюдения. Это деление достигается за счет использования 0,2-миллиметровой карты, расположенной параллельно балке.

Схема эксперимента была сделана так, чтобы луч света был шире карты, поэтому при горизонтальном размещении карты луч разделялся на две примерно равные части. Выход световых лучей направлялся с помощью зеркала.

Оба луча света ударились о стену в темной комнате. Там была обнаружена интерференционная картина между двумя волнами, тем самым продемонстрировав, что свет может вести себя и как частица, и как волна.

Спустя столетие Альберт Эйнстен укрепил эту идею, используя принципы квантовой механики.

Уравнение Шредингера

Шредингер разработал две математические модели, дифференцируя происходящее в зависимости от того, меняется ли квантовое состояние со временем или нет.

Для атомного анализа Шредингер опубликовал в конце 1926 года не зависящее от времени уравнение Шредингера, которое основано на волновых функциях, ведущих себя как стоячие волны.

Это означает, что волна не движется, ее узлы, то есть ее точки равновесия, служат точкой опоры для остальной структуры, чтобы двигаться вокруг них, описывая определенную частоту и амплитуду.

Шредингер определил волны, которые электроны описывают как стационарные или орбитальные состояния, и они, в свою очередь, связаны с разными уровнями энергии.

Не зависящее от времени уравнение Шредингера выглядит следующим образом:

А ТАКЖЕ: константа пропорциональности.

Ψ: волновая функция квантовой системы.

Η ̂: Гамильтонов оператор.

Не зависящее от времени уравнение Шредингера используется, когда наблюдаемая, представляющая полную энергию системы, известная как оператор Гамильтона, не зависит от времени. Однако функция, описывающая полное волновое движение, всегда будет зависеть от времени.

Уравнение Шредингера указывает на то, что если у нас есть волновая функция и на нее действует гамильтонов оператор, константа пропорциональности E представляет собой полную энергию квантовой системы в одном из ее стационарных состояний.

Применительно к модели атома Шредингера, если электрон движется в определенном пространстве, существуют дискретные значения энергии, а если электрон свободно движется в пространстве, существуют непрерывные интервалы энергии.

С математической точки зрения существует несколько решений уравнения Шредингера, каждое решение подразумевает разное значение для константы пропорциональности E.

Согласно принципу неопределенности Гейзенберга, невозможно оценить положение и энергию электрона. Следовательно, ученые признают, что оценка местоположения электрона в атоме неточна.

Постулаты

Постулаты атомной модели Шредингера таковы:

-Электроны ведут себя как стоячие волны, которые распределяются в пространстве согласно волновой функции.

-Электроны движутся внутри атома при описании орбиталей. Это области, где вероятность найти электрон значительно выше. Приведенная вероятность пропорциональна квадрату волновой функции Ψ 2 .

Электронная конфигурация атомной модели Шредингера объясняет периодические свойства атомов и связей, которые они образуют.

Однако атомная модель Шредингера не рассматривает спин электронов и не учитывает изменения в поведении быстрых электронов из-за релятивистских эффектов.

Атомная модель характеристик Шредингера, постулаты

Атомная модель Шредингера Он был разработан Эрвином Шредингером в 1926 году. Это предложение называется квантово-механической моделью атома и описывает волновое поведение электрона..

Для этого выдающийся австрийский физик был основан на гипотезе Бройля, который заявил, что каждая движущаяся частица связана с волной и может вести себя так.

Шредингер предположил, что движение электронов в атоме соответствует дуальности волны и частицы, и, следовательно, электроны могут быть мобилизованы вокруг ядра в виде стоячих волн..

Шредингер, который был удостоен Нобелевской премии в 1933 году за вклад в атомную теорию, разработал одноименное уравнение для расчета вероятности того, что электрон окажется в определенной позиции..

  • 1 Характеристики атомной модели Шредингера
  • 2 Эксперимент
    • 2.1 Эксперимент Юнга: первая демонстрация дуальности волны-частицы
    • 2.2 Уравнение Шредингера
  • 3 постулата
  • 4 Статьи интересов
  • 5 ссылок

Характеристики атомной модели Шредингера

-Описывает движение электронов как стоячих волн.

-Электроны движутся постоянно, то есть они не имеют фиксированного или определенного положения внутри атома.

-Эта модель не предсказывает местоположение электрона и не описывает маршрут, который он совершает внутри атома. Он только устанавливает зону вероятности для обнаружения электрона.

-Эти области вероятности называются атомными орбиталями. Орбитали описывают движение переноса вокруг ядра атома.

-Эти атомные орбитали имеют разные уровни и подуровни энергии и могут быть определены между электронными облаками.

-Модель не рассматривает стабильность ядра, а относится только к объяснению квантовой механики, связанной с движением электронов внутри атома..

эксперимент

Атомная модель Шредингера основана на гипотезе Бройля и предыдущих атомных моделях Бора и Зоммерфельда..

Для этого Шредингер опирался на эксперимент Юнга и на основе собственных наблюдений разработал математическое выражение, носящее его имя..

Следуя научным основам этой атомной модели:

Эксперимент Юнга: первая демонстрация волновой двойственности

Гипотеза Бройля о волнообразной и корпускулярной природе материи может быть продемонстрирована экспериментом Янга, также известным как эксперимент с двумя щелями..

Английский ученый Томас Янг заложил основы атомной модели Шредингера, когда в 1801 году он провел эксперимент, чтобы проверить волновую природу света.

Во время своих экспериментов Янг разделил излучение луча света, который проходит через небольшое отверстие через камеру наблюдения. Это разделение достигается за счет использования 0,2-миллиметровой карты, расположенной параллельно балке..

Дизайн эксперимента был сделан таким образом, чтобы луч света был шире, чем карточка, поэтому при размещении карточки горизонтально луч делился на две примерно равные части. Выход световых лучей направлялся зеркалом.

Оба луча света попали в стену темной комнаты. Там картина интерференции между обеими волнами была очевидна, с которой было продемонстрировано, что свет может вести себя так же, как частица, как волна.

Спустя столетие Альберт Эйнстен подкрепил идею принципами квантовой механики..

Уравнение Шредингера

Шредингер разработал две математические модели, дифференцируя происходящее в зависимости от того, изменяется ли квантовое состояние во времени или нет.

Для атомного анализа Шредингер опубликовал в конце 1926 года независимое от времени уравнение Шредингера, основанное на волновых функциях, которые ведут себя как стоячие волны..

Это означает, что волна не движется, ее узлы, то есть ее точки равновесия, служат опорой для остальной части структуры, чтобы двигаться вокруг них, описывая определенную частоту и амплитуду.

Шредингер определил волны, которые описывают электроны как стационарные или орбитальные состояния и связаны, в свою очередь, с различными уровнями энергии.

Уравнение Шредингера, не зависящее от времени, выглядит следующим образом:

Е: константа пропорциональности.

Ψ: волновая функция квантовой системы.

Η: Гамильтонов оператор.

Не зависящее от времени уравнение Шредингера используется, когда наблюдаемая, представляющая полную энергию системы, известную как гамильтонов оператор, не зависит от времени. Однако функция, которая описывает полное движение волны, всегда будет зависеть от времени.

Уравнение Шредингера показывает, что если у нас есть волновая функция Ψ и на нее действует гамильтонов оператор, константа пропорциональности E представляет полную энергию квантовой системы в одном из ее стационарных состояний.

Применительно к атомной модели Шредингера, если электрон движется в определенном пространстве, существуют дискретные значения энергии, и если электрон движется свободно в пространстве, существуют непрерывные интервалы энергии.

С математической точки зрения, есть несколько решений для уравнения Шредингера, каждое решение предполагает различное значение для константы пропорциональности E.

Согласно принципу неопределенности Гейзенберга, невозможно оценить положение или энергию электрона. Следовательно, ученые признают, что оценка местоположения электрона внутри атома является неточной.

постулаты

Постулаты атомной модели Шредингера таковы:

-Электроны ведут себя как стоячие волны, которые распределены в пространстве в соответствии с волновой функцией Ψ.

-Электроны движутся внутри атома при описании орбиталей. Это области, где вероятность обнаружения электрона значительно выше. Приведенная вероятность пропорциональна квадрату волновой функции Ψ 2 .

Электронная конфигурация атомной модели Шредингера объясняет периодические свойства атомов и связей, которые образуют.

Однако модель атома Шредингера не рассматривает спин электронов и не учитывает изменения поведения быстрых электронов из-за релятивистских эффектов..

Квантово-механическая модель строения атома. Корпускулярно-волновые свойства электрона: уравнение Де Бройля, принцип неопределенности Гейзенберга (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7

В 1911г. Э. Резерфорд предложил модель атома, согласно которой атом состоит из положительно заряженного ядра, в котором находится почти вся масса атома, и располагающихся вокруг ядра электронов. Ядро состоит из протонов и нейтронов. Число электронов равно числу протонов и, поэтому, атом электронейтрален.

В основе квантово-механической теории строения атомов лежат их корпускулярно-волновые свойства. С движущимся электроном ассоциируется волна, длина которой определяется уравнением Де-Бройля: где λ — длина волны, (м); m — масса электрона; V-скорость движения частицы (≈108 м/с), h — постоянная Планка. Принцип неопределенности Гейзенберга: невозможно описать с высокой степенью точности местонахождение электрона (координаты), и его энергию (импульс) в один и тот же момент времени.

2. Уравнение Шредингера. Квантовые числа, волновая функция, понятие об атомной орбитали.

Уравнение Шрёдингера (1926 г) описывает волновые и корпускулярные свойства электрона в атоме водорода. Решениями уравнения Шредингера являются энергии электрона и волновая функция ψ(пси).

Волновая функция ψ зависит от координат (x, y, z), и энергии E электрона и не имеет определенного физического толкования. Квадрат волновой функции ψ2 определяет плотность вероятности нахождения электрона в точке с координатами (x, y, z). ψ2·ΔV –вероятность нахождения электрона в данном объеме атома ΔV. Чем больше ψ2·ΔV, тем плотнее электронное облако в данном объеме атома.

Область пространства, в которой вероятность нахождения электрона составляет не менее 90%, называют атомной орбиталью. Атомные орбитали различаются по энергии, размерам, форме, ориентации в пространстве и могут быть охарактеризованы тремя квантовыми числами (n, l, ml).

Главное квантовое число характеризует энергию электрона в атоме. принимает только целые положительные значения n = 1, 2, 3…∞. С увеличением n энергия и размер электронного облака (атомной орбитали) возрастает. Совокупность атомных орбиталей с одинаковым значением n называют уровнем или электронным слоем.

Орбитальное квантовое число l принимает значения от 0 до (n-1), например, при n = 3: l = 0, 1, 2. Характеризует форму атомных орбиталей (электронных облаков), для которых в зависимости от l приняты соответствующие обозначения: l 0, 1, 2, 3, 4, 5…

обозначение s, p, d, f, g, h…

Магнитное квантовое число определяет возможные ориентации электронного облака в пространстве. ml – может принимать положительные и отрицательные целочисленные значения от –l до +l через нуль. Так, для s — орбиталей (l = 0, ml = 0), возможна одна ориентация. Для р — орбиталей (l=1, ml = -1, 0, +1), что соответствует трем ориентациям р — орбиталей относительно трех осей. Для d — орбиталей (l=2, ml = -2, -1, 0, +1, +2) число возможных ориентаций – пять, для f – орбиталей — семь.

Спиновое (ms) квантовое число характеризует сложное движение электрона вокруг собственной оси; принимает значения +1/2 и –1/2.

3. Энергетическая диаграмма возможных состояний электрона в атоме водорода.

4. Распределение электронов по АО в многоэлектронных атомах. Принцип Паули, правило Гунда, правила Клечковского.

Распределение электронов в многоэлектронных атомах основано на трех положениях: принципе минимума энергии, принципе В. Паули и правиле Ф. Хунда.

Принцип наименьшей энергии. Электроны занимают в атоме орбитали с наименьшей энергией. Последовательность расположения АО по уровням энергии при заполнении электронами определяется правилом Клечковского: электроны в невозбужденном атоме располагаются в состояниях, где меньше сумма (n+l), так как энергия электронов зависит от n и l и не зависит от ml и ms. При одинаковом значении этой суммы в первую очередь заполняется орбиталь с меньшим значением главного квантового числа (n).

Принцип Паули. В атоме не может быть двух электронов, имеющих четыре одинаковых квантовых числа. Один электрон от другого на атомной орбитали должен отличаться спиновым квантовым числом. Как следует из принципа Паули, на атомной орбитали максимально может быть два электрона, отличающихся спином и это обозначается: ↑↓.

Правило Хунда. При заполнении энергетического подуровня, электроны стремятся заполнить свободные орбитали, сначала по одному с параллельными спинами, а затем по второму с противоположными спинами.

5. Периодический закон. Периодическая система. Электронные конфигурации атомов.

Периодический закон: свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов.

Периодическую систему химических элементов в настоящее время рассматривают как классификацию элементов в зависимости от зарядов ядра и от строения электронных оболочек невозбужденных атомов. Распределение электронов по атомным орбиталям называют электронной конфигурацией атома. И представляют в виде а) полной электронной формулы, например: 22Ti 1s22s22p63s23p64s23d2; б) краткой электронной формулы: 22Ti [Ar]4s23d2; в) электроно-графической формулы, в которой атомные орбитали обозначают в виде клеток (энергетических или квантовых ячеек), а электроны – стрелками ↑↓.

6. Периодические свойства атомов (радиусы атомов, энергия ионизации, сродство к электрону, электроотрицательность).

— атомный и ионный радиусы (r), определяемые как средние радиусы атома или иона, находимые из экспериментальных данных по межатомным расстояниям в различных соединениях;

— энергия ионизации, определяемая количеством энергии, необходимой для отрыва электрона от атома ();

— сродство к электрону, определяемое количеством энергии, выделяющейся при присоединении дополнительного электрона к атому ();

Электроотрицательность (χ) — фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе общие электронные пары.

7. Характерные степени окисления элементов.

Степень окисления — условный заряд атома в молекуле, вычисленный в предположении, что все связи имеют ионный характер. Понятие степени окисления введено в предположении о пол­ном смещении пар электронов к тому или другому атому (показывая при этом заряд ионов, образующих ионное соедине­ние). Поэтому следует помнить, что в полярных соединениях сте­пень окисления означает число электронов, лишь смещенных от данного атома к атому, связанному с ним.

8. Ковалентная химическая связь: механизмы её образования, разновидности. Длина, энергия, порядок (кратность) ковалентной связи.

Связь, образованную посредством перекрывания электронных облаков, то есть осуществляемую общей парой электронов с противоположными спинами, называют ковалентной связью.

Для объяснения природы ковалентной связи и механизма ее образования используются два метода – метод валентных связей (ВС) и метод молекулярных орбиталей (МО). В основе метода ВС лежит теория Льюиса об образовании ковалентной связи формированием общей пары электронов между взаимодействующими атомами. Основные характеристики ковалентной химической связи – длина связи, энергия связи. С увеличением кратности связи уменьшается длина связи и увеличивается суммарная энергия связи.

9, 10. Насыщаемость ковалентной связи и валентные возможности атомов.

Направленность ковалентной связи и геометрия молекулы.

Ковалентной связи присущи следующие особенности – насыщаемость и направленность. Насыщаемость определяет стехиометрию молекулярных химических соединений (формульный состав, массовые соотношения элементов) и валентные возможности атомов (способность образовать ограниченное число ковалентных связей).

Направленность ковалентной связи определяет геометрическую структуру (форму) молекулы. Атомные орбитали имеют разные формы и размеры, разную ориентированность в пространстве, и перекрываются по определенным, предпочтительным направлениям, в которых достигается максимальная плотность перекрывания. Это приводит к образованию молекулы определенной геометрической формы (линейной, угловой, тетраэдрической и др). Например, атом серы в сероводороде образует связи с атомами водорода за счет p-электронов, ориентированных вдоль осей координат под углом 90о.

11. Полярность и поляризуемость ковалентной связи. Полярность молекулы.

Связь в двухатомных молекулах, образованная из одинаковых атомов (Н2) или атомов близких по электроотрицательности (ЭО), называется неполярной (гомеополярной). Связь, образованная различными атомами, отличающимися ЭО, называется полярной (гетерополярной).

Полярность связи обуславливается различием ЭО и размеров атомов. Полярность связи обуславливает полярность молекулы – то есть несимметричное распределение электронной плотности, при котором «центры тяжести положительных и отрицательных зарядов» в молекуле не будут совпадать в одной точке. Поляризуемостью ковалентной связи и (или) молекулы называют ее способность под действием внешнего электрического поля становиться полярной или более полярной. Поляризуемость π-связи выше, чем поляризуемость σ-связи. Поляризуемость молекулы возрастает с увеличением ее объема и числа π-связей.

12. Металлическая связь. Деление элементов на металлы и неметаллы. Металлические структуры.

Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Металлическая связь возникает в металлах, сплавах, интерметаллических соединениях. Валентные электроны внешних оболочек металла относительно легко удаляются, из атомов образуются катионы металла. Электроны делокализованы и могут свободно перемещаться по всему кристаллу. Оставшиеся катионы металлов притягиваются делокализованным электронным облаком («электронным газом»), заполняющим пространство между ними. Образованную подобным образом химическую связь называют металлической связью. Металлическая связь характеризуется ненаправленностью и ненасыщаемостью. Строение металлических кристаллов наиболее точно описывается «структурами с плотнейшей укладкой шаров».


источники:

http://ru.thpanorama.com/articles/fsica/modelo-atmico-de-schrdinger-caractersticas-postulados.html

http://pandia.ru/text/80/353/5866.php