Лабораторная работа иллюстрация уравнения бернулли

ПАХТ 4. Лабораторная работа 4 Экспериментальная демонстрация уравнения Бернулли студент группы 419144 Шакиров Б. Р. Проверил

НазваниеЛабораторная работа 4 Экспериментальная демонстрация уравнения Бернулли студент группы 419144 Шакиров Б. Р. Проверил
Дата14.04.2021
Размер55.24 Kb.
Формат файла
Имя файлаПАХТ 4.docx
ТипЛабораторная работа
#194624
Подборка по базе: Практическая работа №2.docx, Контрольная работа по макроэкономике.docx, Практическая работа 16.docx, Лабораторная работа №1.docx, Курсовая работа Управление взаимоотношениями с клиентами.docx, Лабораторная работа ардуино 2.docx, 27 внутренняя энергия и работа газа.docx, Адмакина работа.docx, Ямалеева Руфина Лабораторная.pdf, Лабораторная работа №1.docx

Министерство высшего образования и науки РФ

«Казанский национальный исследовательский технологический университет»

Кафедра «Процессы и аппараты химической технологии» («ПАХТ»)

Лабораторная работа №4

«Экспериментальная демонстрация уравнения Бернулли»

студент группы 4191-44

доцент кафедры ПАХТ

Казань 2021
Название: Экспериментальная демонстрация уравнения Бернулли

1) уяснение физического смысла уравнения Бернулли;

2) определение потерь напора в трубопроводе переменного сечения;

3) ознакомление со способами измерения средней и локальной

скоростей движения жидкости.

Описание и схема установки:

Рис.1. Схема установки

1 – напорный бак, 2 – трубопровод переменного сечения, 3 – мерный

бак, 4 – сливной отсек мерного бака, 5, 7, 9 – вентиль, 6 – кран, 8 –

патрубок, 10 – пьезометрическая трубка, 11 – трубка Пито

­­ 1.Что называется напором?

В гидравлике энергия, отнесенная к единице веса жидкости, называется напором и измеряется высотой столба жидкости.

2.В чем заключается смысл уравнения Бернулли?

где w – скорость в рассматриваемом сечении элементарной струйки, м/с;

р – давление в том же сечении, Па ;

z – геометрическая высота 49 расположения этого сечения относительно произвольно выбранной горизонтальной плоскости сравнения О – О, м;

ρ – плотность жидкости, кг/м 3 ;

g – ускорение силы тяжести, м/с 2

В уравнении Бернулли =hск – скоростной напор; p/ρg = hпз – пьезометрический напор; z – геометрический напор. Сумма геометрического и пьезометрического напоров называется статическим напором. Следовательно, уравнение Бернулли можно сформулировать следующим образом: сумма геометрического, пьезометрического и скоростного напоров (полный гидродинамический напор) в любом сечении потока невязкой жидкости есть величина постоянная. Из уравнения Бернулли следует, что увеличение какой-либо составляющей полного гидродинамического напора (например, скоростного напора) приводит к уменьшению другой составляющей (например, пьезометрического напора), и наоборот. Таким образом, уравнение Бернулли является математическим выражением закона сохранения и превращения механической энергии применительно к движущейся идеальной жидкости.

3.Как определяют полный и статический напоры?

Сумма геометрического и пьезометрического напоров называется статическим напором

Полный гидродинамический напор – это сумма геометрического, пьезометрического и скоростного напоров

4.Что представляет собой потерянный напор?

Потерянный напор∆hij – это та удельная (отнесенная к единице веса) механическая энергия, которая перешла в теплоту при движении жидкости между сечениями i и j

трубы? В каком случае потерянный напор можно было бы

определить по показаниям пьезометрических трубок?

6.Как измеряется скоростной напор? Какой скорости соответствует полученный таким способом скоростной напор?

Трубка Пито и пьезометрическая трубка должны быть установлены так, чтобы центры сечений на входе в эти трубки лежали в исследуемом сечении трубопровода. По разности уровней в них определяют скоростной напор и соответственно местную скорость в точке потока, совпадающей с центром сечения входа в трубку Пито:

По величине скоростного напора для каждого сечения вычисляется местная скорость движения жидкости

7.Как определяются средняя и местная скорости течения жидкости?

Величина средней скорости в сечениях определяется из уравнения расхода:

Где расход ; , V- объем воды, равный емкости мерного бака, t- – время заполнения мерного бака

По величине скоростного напора для каждого сечения вычисляется местная скорость движения жидкости

8.Что представляет собой диаграмма Бернулли?

Диаграмма уравнения Бернулли является графическим представлением изменения различных слагаемых уравнения Бернулли по длине трубопровода. Диаграмма характеризует удельную механическую энергию потока и включает в себя три линии: линию полного напора, пьезометрическую линию и линию геометрического напора.

Линия полного напора характеризует полную удельную механическую энергию, то есть сумму кинетической и потенциальной энергий

Пьезометрическая линия характеризует удельную потенциальную энергию потока и представляет сумму двух слагаемых

Геометрическая линия, или линия геометрического напора характеризует уклон трубопровода, т. е. изменение координаты z оси трубопровода.

9.Как строится линия полного напора?

Линия полного напора идеальной жидкости проводится параллельно оси абсцисс на расстоянии (hпз1+z1) от плоскости сравнения. За счет потерь на трение линия полного напора вязкой жидкости на каждом прямом участке трубы должна иметь некоторый уклон в сторону течения жидкости. Однако на данной экспериментальной установке эти потери очень малы. Поэтому на каждом участке через точки полных напоров в данных сечениях проводятся условно с небольшим наклоном линии полного напора до границ сужений а, b, c. Затем точки пересечения линий полных напоров с границами сужений соединяют отрезками прямых. В сужениях между отдельными участками проис- 55 ходит деформация потока, что приводит к вихреобразованию и к более резкому падению полного напора, чем на прямых участках трубопровода.

10.Как строится линия статического напора?

Линия статического напора на прямых участках проводится параллельно соответствующим линиям полного напора, поскольку на прямых участках скорость потока (и скоростные напоры) не изменяется. Как это следует из уравнения Бернулли, в сужениях происходит сначала резкое уменьшение, а затем возрастание статического напора. Так как в местах сужений не осуществляются измерения напоров, линия статического напора в сечениях а, b, c проводится произвольно

11.Как по диаграмме Бернулли определить потерянный напор?

Вычесть из значения полного напора в начальном сечении значение полного напора в конечном сечении рассматриваемых участков

12.Приведите примеры и дайте объяснение использованию

уравнения Бернулли в технике

Уравнение Бернулли широко применяется в технике, как для выполнения гидравлических расчетов, так и для решения ряда практических задач. Одной из таких задач является измерение скорости и расхода жидкости.

Трубка полного напора (или трубка Пито) служит для измерения скорости, например, в трубе. Если установить в этом потоке трубку, изогнутую под углом 90°, отверстием навстречу потоку и пьезометр, то жидкость в этой трубке поднимается над уровнем в пьезометре на высоту, равную скоростному напору. Объясняется это тем, что скорость υ частиц жидкости, попадающих в отверстие трубки, уменьшается до нуля, а давление, следовательно, увеличивается на величину скоростного напора. Измерив разность высот подъема жидкости в трубке Пито и пьезометре, легко определить скорость жидкости в данной точке.

На этом же принципе основано измерение скорости полета самолета.

Запишем уравнение Бернулли для струйки, которая набегает на трубку вдоль ее оси, а затем растекается по ее поверхности. Для сечений 0-0 (невозмущенный поток) и 1-1 (где υ = 0), получаем

Так как боковые отверстия трубки приближенно воспринимают давление невозмущенного потока, р2 ≈ р0, следовательно из предыдущего имеем

.

Карбюратор поршневых двигателей внутреннего сгорания служит для подсоса бензина и смешения его с потоком воздуха . Поток воздуха; засасываемого в двигатель, сужается в том месте, где установлен распылитель бензина (обрез трубки диаметром d). Скорость воздуха в этом сечении возрастает, а давление по закону Бернулли падает. Благодаря пониженному давлению бензин вытекает в поток воздуха.

Найдем соотношение между массовыми расходами бензина и воздуха при заданных размерах D и d и коэффициентах сопротивления воздушного канала (до сечения 2-2) ζв и жиклера ζж (сопротивлением бензотрубки пренебрегаем).

З аписав уравнение Бернулли для потока воздуха (сечение 0-0 и 2-2), а затем для потока бензина (сечение 1-1 и 2-2), получим (при z1 = z2 и α = 1):

Учитывая, что массовые расходы и , получим

Обработка экспериментальных данных

t = 124 сек V=28

сеченияZ, смhпз, смhпт, см , ʌh1₋j, мhск, мWimax, Ŵi,
18555622500.014,430,39
2146520.110.0610,850,65
3027480.160.2120,31,46
4014160.480.026,30,59

D1=27мм

м

м

Работа 6. Иллюстрация уравнения бернулли

Цель работы

1. Опытное подтверждение выводов, следующих из уравнения Бернулли, то есть снижение механической энергии вдоль потока, а также перехода потенциальной энергии в кинетическую и обратно.

2. Построение на основании опытных данных пьезометрической и напорной линий, иллюстрирующих изменение удельной потенциальной и полной удельной механической энергии вдоль потока соответственно.

Общие сведения

Уравнение Бернулли для элементарной струйки идеальной жидкости имеет вид:

(1)

где z – геометрический напор (высота нормального сечения струйки относительно плоскости сравнения), м; – пьезометрический напор, м (Р – давление в этом сечении), м; – скоростной напор (U – скорость в этом сечении), м.

Назовем удельной механической энергией механическую энергию, отнесенную к единице веса жидкости. Эта удельная механическая энергия называется напором. Очевидно, что единица измерения напора – метр (Дж / Н = м).

Геометрическим напором zназывается удельная потенциальная энергия положения жидкости.

Пьезометрическим напором называется удельная потенциальная энергия давления жидкости.

Гидростатическим напором называется удельная потенциальная энергия жидкости.

Скоростным напором называется удельная кинетическая энергия жидкости.

Полным напором называется полная (кинетическая и потенциальная) удельная механическая энергия жидкости.

С физической точки зрения уравнение Бернулли для элементарной струйки идеальной жидкости выражает закон сохранения механической энергии.

Таким образом, полная удельная механическая энергия жидкости постоянна вдоль струйки, но ее составляющие части – кинетическая и потенциальная энергии – могут изменяться. Характер этих изменений вполне определяется геометрическими параметрами струйки.

При переходе от элементарной струйки идеальной жидкости к потоку реальной вязкой жидкости необходимо учитывать потери энергии, обусловленные различными гидравлическими сопротивлениями, а также неравномерный характер распределения поля скоростей и давлений по живому сечению потока. Для расчетного участка плавно изменяющегося течения реальной жидкости, ограниченного живыми сечениями 1 и 2 , уравнение Бернулли примет следующий вид:

(2)

где V1 и V2 – средние скорости потока в сечениях 1 и 2 соответственно, м/с; – потери удельной энергии на расчетном участке между сечениями 1 и 2, м; a1 и a2 – коэффициенты кинетической энергии (коэффициенты Кориолиса) в сечениях 1 и 2 соответственно.

Коэффициент кинетической энергии (коэффициент Кориолиса) a, учиты-вающий неравномерность поля скоростей по живому сечению, представляет собой отношение действительного значения кинетической энергии, проносимой потоком жидкости через живое сечение за некоторый отрезок времени, к значению кинетической энергии, определенной для того же отрезка времени при условии, что движение частиц жидкости происходит со средней для данного сечения скоростью

. (3)

Уравнение Бернулли для потока реальной жидкости является уравнением баланса энергии с учетом потерь. Энергия, теряемая жидкостью, не исчезает бесследно, а превращается в другую форму – тепловую.

Графической иллюстрацией этих изменений является напорная линия (н. л.).

Напорная линия – это график изменения (в случае идеальной жидкости – сохранения) полной удельной механической энергии вдоль потока (струйки).

Из уравнения неразрывности для элементарной струйки

, (4)

или для потока реальной несжимаемой жидкости

, (5)

следует, что скорость (следовательно, удельная кинетическая энергия) изменятся обратно пропорционально площади живого сечения или : увеличивается на суживающихся участках, уменьшается на расширяющихся участках и остается постоянной на участках с постоянным сечением. Изменение кинетической энергии приводит к изменению потенциальной энергии: увеличение кинетической энергии сопровождается уменьшением потенциальной и наоборот. Характер этих изменений иллюстрирует пьезометрическая линия (пьез. л.).

Пьезометрическая линия – это график изменения гидростатического напора вдоль потока (струйки).

Описание устройства № 4

Устройства № 4 содержит баки 1 и 2, сообщаемые через опытные каналы переменного № и постоянного 4 сечений (рис. 5). Каналы соединены между собой равномерно расположенными пьезометрами I – V, служащими для измерения пьезометрических напоров в характерных сечениях. Устройство заполнено подкрашенной водой. В одном из баков предусмотрена шкала 5 для измерения уровня воды.

При перевертывании устройства благодаря постоянству напора истечения H0 во времени, обеспечивается установившееся движение воды в нижнем канале. Другой канал в это время пропускает воздух, вытесняемый жидкостью из нижнего бака в верхний.

Рис. 5. Схема устройства № 4: 1, 2 – баки; 3, 4 – опытные каналы
переменного и постоянного сечений; 5 – уровнемерная шкала;
I – V – пьезометры

Порядок выполнения работы

1. Заполнив водой бак 1 (см. рис. 5), перевернуть устройство для получений течения в канале постоянного сечения 4.

2. Снять показания пьезометров по нижним положениям менисков воды в них для пяти сечений I …V, пьезометрический напор в шестом сечении

равен нулю, то есть .

3. Измерить время t (в секундах) перемещения уровня воды в баке на произвольно заданную величину S.

4. По данным измерений определить:

а) расход жидкости

, (5)

числовые значения поперечного сечения бака А и В определить по табло на устройстве № 4;

б) среднюю скорость потока в сечениях I …VI (значения площадей сечений w приведены на табло устройства № 4)

; (6)

в) скоростные напоры в сечениях I…VI, приняв коэффициент кинетической энергии aI…a VI »1;

г) полные напоры в сечениях канала I…VI, совместив плоскость сравнения с осевой линией потока (таким образом,
z I…z VI = 0).

5. Данные опытов занести в табл. 9 (см. Приложение).

6. Построить для данного канала пьезометрическую линию. Для этого, обозначив контуры канала, отложить в масштабе от его осевой линии (плоскости сравнения) для сечений I…VI пьезометрические напоры . Соединив крайние точки, получить пьезометрическую линию, иллюстрирующую изменение потенциальной энергии (гидростатического напора) вдоль потока (рис. 6, кривая 1).

7. На том же рисунке построить напорную линию. Для этого в масштабе отложить для каждого сечения I …VI от пьезометрической линии скоростные напоры (или от осевой линии потока – полные напоры ) и соединить полученные точки (см. рис. 6, кривая 2).

Рис. 6. Построение напорных линий для канала постоянного сечения

8. Заполнив водой бак 2 (см. рис. 5) и перевернув устройство для получения течения в канале переменного сечения 3, повторить опыт по пп. 2…7. Пьезометрическая и напорная линии для данного канала показаны на рис. 7 кривой 1 и 2 соответственно.

9. Сделать выводы по данной работе.

Рис. 7. Построение напорных линий для канала переменного сечения

Работа 7. Исследование местных гидравлических
сопротивлений

Цель работы

1. Освоение методики опытного определения потерь напора в местных гидравлических сопротивлениях.

2. Проведение сравнительного анализа потерь напора в местных сопротивлениях, полученных опытным путем, с потерями напора, рассчитанными по формуле Вейсбаха при использовании инженерных зависимостей для коэффициентов местных сопротивлений. Вычисление относительного расхождения опытного и расчетного значений потерь напора в местных гидравлических сопротивлениях.

Общие сведения

Местные изменения размеров или конфигурации русла на различных фасонных участках (внезапное или плавное расширение (сужение), вентили, задвижки, клапаны, колена, арматура и т.п.) вызывают деформацию и изменение скорости потока. При прохождении жидкости через фасонные участки происходит отрыв транзитного потока от стенок русла, образуются циркуляционные зоны, на вращение жидкости в которых затрачивается часть механической энергии потока.

Гидравлические сопротивления фасонных участков называются местными сопротивлениями, потери механической энергии в этих местных сопротивлениях называютсяместными потерями энергии.

Потери напора в местных гидравлических сопротивлениях с физической точки зрения обусловлены инерционно-вязкостным взаимодействием жидкости со стенками фасонных участков русла и могут быть определены по формуле Вейсбаха:

, (1)

где z – коэффициент местного сопротивления; V – средняя по сечению скорость, м/с.

Если скорость в местном гидравлическом сопротивлении изменяется по длине, то за расчетную скорость принято принимать бóльшую из скоростей.

Сложный характер взаимодействия потока жидкости с местными гидравлическими сопротивлениями не позволяет, как правило, установить аналитические зависимости для определения коэффициентов местных сопротивлений z. Для большинства местных сопротивлений коэффициенты z определяются опытным путем. В общем случае, как показывают расчеты и данные опытов, коэффициенты z зависят от геометрии фасонного участка трубы или канала и от состояния потока. При этом влияние числа Рейнольдса Reна коэффициенты многих местных сопротивлений ограничивается, как правило, областью ламинарного течения жидкости. При турбулентном течении коэффициенты местных сопротивлений z определяются в основном формой местных сопротивлений и геометрическими параметрами и не зависят от числа Рейнольдса, что означает квадратичный закон сопротивления или автомодельность.

Величина местных потерь напора экспериментально определяется разностью полных напоров жидкости до и после местного сопротивления. При этом коэффициент местного сопротивления z определяется отношением местных потерь напора к скоростному напору, то есть

. (2)

При расчетномопределении потерь напора по формуле Вейсбаха (1) коэффициент местного сопротивления при внезапном сужении русламожет быть определен по полуэмпирической формуле Идельчика:

. (3)

При определении потерь напора при внезапном сужении потока необходимо коэффициент умножить на бóльший скоростной напор, то есть на V2 /2×g.

Коэффициент местного сопротивления при внезапном расширении русламожет быть определен по следующей аналитической зависимости:

(4)

При определении потерь напора при внезапном расширении потока необходимо коэффициент умножить на бóльший скоростной напор, то есть на V1 /2×g.

Порядок выполнения работы

1. Перенести из табл. 9 лабораторной работы № 6 (см. Приложение) данные канала переменного сечения: значения площадей сечений II и III (внезапное сужение) и полных напоров в этих сечениях; значения площадей сечений IV и V (внезапное расширение) и полных напоров в этих сечениях, а также скоростных напоров в сечениях III и IV (при этом ) в табл. 10 (см. Приложение).

2. Определить опытные значения местных потерь при внезапном сужении потока как разность полных напоров сечений II и III соответственно.

3. Определить опытные значения местных потерь при внезапном расширении потока как разность полных напоров сечений IV и V соответственно.

4. Найти расчетные значения местных потерь при внезапном сужении и внезапном расширении потока, используя формулу Вейсбаха (1), также формулы (3) и (4) для определения коэффициентов местных сопротивлений при внезапном сужении и расширении русла соответственно.

5. Определить относительное расхождение d опытного и расчетного значений потерь напора при внезапном сужении и расширении русла.

Дистанционная лабораторная работа 5 по иллюстрации уравнения Бернулли

Цель работы. Опытное подтверждение уравнения Д. Бернулли, т. е. понижения механической энергии по течению и перехода потенциальной энергии в кинетическую и обратно (связи давления со скоростью).

Задание. На основе замеров при просмотре фильма и анализе фотографии течения жидкости в канале переменного сечения в устройстве № 4 построить линии энергий для потока и проверить их соответствие уравнению Бернулли.

Описание устройства № 4. Устройство № 4 содержит баки 1 и 2, сообщаемые через опытные каналы постоянного 3 и переменного 4 сечений (рис. 1). Каналы соединены между собой равномерно расположенными пьезометрами I–V, служащими для измерения пьезометрических напоров в характерных сечениях. Устройство заполнено подкрашенной водой.

В одном из баков предусмотрена шкала 5 для измерения уровня воды. При перевертывании устройства, благодаря постоянству напора истечения Н о во времени, обеспечивается установившееся движение воды в нижнем канале. Другой канал в это время пропускает воздух, вытесняемый жидкостью из нижнего бака в верхний.

Порядок выполнения работы.

1. Зарисовать схему устройства № 4 и составить таблицу следующего вида.

2. Посмотреть фильм с демонстрацией течения воды через канал переменного сечения в устройстве № 4 и секундомером замерить время t полного опорожнения верхнего бака.

3. Под таблицей записать значение времени t t опорожнения бака, объем бака принять равным W=700 см 3 и определить расход Q=W/t Q = W t .

4. В строке (стр.) 2 рассчитать среднюю скорость течения жидкости в каждом сечении канала: V=Q / w ω Скорость в нулевом сечении (перед входом в канал) принять равной нулю.

5. На фотографии канала с пьезометрами (рис. 2) снять показания пьезометров hП1 . . . . hП5 и записать их в стр. 3. В сечении VI пьезометрический напор равен 0.

6. В стр. 4 определить скоростной напор hк в сечениях канала. Принять g = 981 см/с 2 .

7. В стр. 5 определить полный напор H H (полную удельную энергию) в каждом сечении. Так как опытный канал горизонтальный и плоскость сравнения 0–0 проведена через его ось, то геометрический напор z1= z2= 0 .

8. Вычертить в масштабе канал с осями пьезометров (рис. 3). Отложить от оси канала пьезометрические напоры hП h п на осях пьезометров, наметить уровни жидкости и соединить их между собой и центром выходного сечения VI , как показано на рис. 3. Получится пьезометрическая линия, показывающая изменение потенциальной энергии (давления) вдоль потока. Для получения напорной линии (линии полной механической энергии) нужно отложить от оси канала полные напоры Н и соединить полученные точки, как показано на рис. 3.

9. Проанализировать изменения полной механической H , потенциальной и кинетической V 2 /(2g) V 2 /(2 g ) энергий жидкости вдоль потока и проверить их соответствие нижеприведенным правилам построения линий энергий, вытекающим из уравнения Бернулли.

А. Напорная линия (полный напор постоянно понижается по течению (если на рассматриваемом участке нет насоса) ввиду необратимого преобразования механической энергии в тепловую при преодолении потоком сил гидравлического трения. Причем уклон линии (потери напора h тр ) тем больше, чем меньше сечение участка потока (см. рис. 3).

Б. Пьезометрическая линия отражает изменение потенциальной энергии (z + ) , и, в отличие от напорной, может не только понижаться, но и повышаться по течению. Это происходит при расширении потока (см. рис. 2, 3) за счет повышения давления p ввиду уменьшения скорости V . Пьезометрическая линия проходит через центр тяжести выходного сечения канала (трубопровода) при истечении жидкости в атмосферу и ниже оси канала, если давление в нем меньше атмосферного.

В. Расстояние между пьезометрической и напорной линиями численно равно кинетической энергии α V 2 /( 2 g ) и поэтому обратно пропорционально диаметру трубы. Для участков потоков постоянного сечения средние скорости одинаковы по пути, поэтому такие линии, как правило, параллельны между собой (рис. 3). Эти линии для потоков в конфузорах (конических сходящихся патрубках) расходятся, а в диффузорах (конических расходящихся патрубках) – сходятся. В баках и водоёмах, где жидкость не движется (V=0) ( V =0) , напорная и пьезометрическая линии энергий совпадают со свободной поверхностью, если она находится под атмосферным давлением.

10. Записать выводы , где указать какие знания и навыки получены при выполнении данной работы и в каких сферах инженерной деятельности они могут быть применены.


источники:

http://lektsia.com/3x21c4.html

http://labkap.ru/articles/distancionnoe-obuchenie-gidravlike/distancionnaya-laboratornaya-rabota-5-illyustraciya-uravneniya-bernulli