Лекция по теме показательные уравнения

Лекция по теме: «Показательные уравнения»

ГД 114 законспектировать лекцию и разобрать примеры!

Просмотр содержимого документа
«Лекция по теме: «Показательные уравнения»»

ГД 114 Математика

Преподаватель: Водяхина Н. В. Электронный адрес почты: [email protected]

Задание выдано 27.05.20. Задание выполнить до следующего занятия!

Лекция: «Методы решения показательных уравнений»

Цель: изучить способы решения показательных уравнений и закрепить их при выполнении упражнений

— обучающие: повторить определения и основные свойства, уметь применять их в вычислении, в решении уравнений;

-развивающие: формировать умение решать уравнения;

-воспитательные: воспитывать настойчивость, самостоятельность; прививать интерес к предмету

Уравнения, содержащие неизвестные в показателе степени, называются показательными уравнениями. Простейшим из них является уравнение а x = b, где а 0, а ≠ 1, b 0.

1) При b и b = 0 это уравнение, согласно определению показательной функции, не имеет решения.

2) При b 0 используя монотонность функции и теорему о корне, уравнение имеет единственный корень. Для того, чтобы его найти, надо b представить в виде b = a с , а x = b с x = c.

Показательные уравнения путем алгебраических преобразований приводят к стандартным уравнения, которые решаются, используя следующие методы.

Способ основан на следующем свойстве степеней: если равны две степени и равны их основания, то равны и их показатели, т.е. уравнение надо попытаться свести к виду

Примеры. Решить уравнение:

Представим правую часть уравнения в виде 81 = 3 4 и запишем уравнение, равносильное исходному 3 x = 3 4 ; x = 4.

2.

Представим правую часть уравнения в виде и перейдем к уравнению для показателей степеней 3x+1 = 3 – 5x; 8x = 4; x = 0,5.

3.

Представим правую часть данного уравнения в виде 1 = 5 0 и перейдем к уравнению для показателей степеней x 2 -3x+2 = 0, откуда легко получить решения x = 1 и x=2.

4.

Заметим, что числа 0,2, 0,04, √5 и 25 представляют собой степени числа 5. Воспользуемся этим и преобразуем исходное уравнение следующим образом:

, откуда 5 — x -1 = 5 -2 x -2  — x – 1 = — 2x – 2, из которого находим решение x = -1. Ответ: -1

Перепишем уравнение в виде 3 2 x +4 .2 2 x +4 = 3 2 x .2 x +8 , т.е. далее

2 2 x +4- x -8 = 3 3 x -2 x -4 , т.е. 2 x -4 = 3 x -4 . (Уже ясно, что x = 4). Перепишем уравнение, разделив на 3 x -4 ≠ 0. Отсюда x – 4 =0, x = 4.

Используя свойства степеней, запишем уравнение в виде 6∙3 x — 2∙3 x – 3 x = 9, далее 3∙3 x = 9, 3 x +1 = 3 2 , т.е. x+1 = 2, x =1.

2. Метод введения новых переменных

Введение новой переменной (подстановка) обычно производится после преобразований (упрощения) членов уравнения.

1.

Перепишем уравнение иначе: . Обозначим 5 x = t 0, тогда т.е. 3t 2 – 2t – 1 =0, отсюда t1 = 1, -не удовлетворяет условию t 0. Итак, 5 x = 1 = 5 0 x = 0.

2.

Заменим , получим уравнение 2t 2 – 5t +3 = 0, где t1 = 1, t2 = . Вернёмся к замене

3.

Заменим , получим уравнение 8t 2 – 6t +1 = 0, где t1 = 1, t2 = . Вернёмся к замене

3. Метод разложения на множители

В левой части уравнения вынести общий множитель за скобки

1. 5 x +1 — 5 x -1 = 24

Перепишем уравнение в виде Теперь в левой части уравнения вынесем за скобки общий множитель 5 x . Получим

Вынесем за скобки в левой части уравнения 6 x , а в правой части – 2 x . Получим уравнение

6 x (1+6) = 2 x (1+2+4)  6 x = 2 x . Так как 2 x 0 при всех x, можно обе части этого уравнения разделить на 2 x , не опасаясь при этом потери решений. Получим 3 x = 1 x = 0.

Решим уравнение методом разложения на множители (можно решить методом замены переменной)

Выделим квадрат двучлена

Лекция: «Методы решения показательных уравнений».
материал для подготовки к егэ (гиа) по алгебре (11 класс) на тему

1. Показательные уравнения.

Уравнения, содержащие неизвестные в показателе степени, называются показательными уравнениями. Простейшим из них является уравнение а x = b, где а > 0, а ≠ 1.

1) При b 0 используя монотонность функции и теорему о корне, уравнение имеет единственный корень. Для того, чтобы его найти, надо b представить в виде b = a с , а x = b с ó x = c или x = logab.

Показательные уравнения путем алгебраических преобразований приводят к стандартным уравнения, которые решаются, используя следующие методы:

1) метод приведения к одному основанию ;

3) графический метод;

4) метод введения новых переменных;

5) метод разложения на множители;

6) показательно – степенные уравнения;

7) показательные с параметром.

Скачать:

ВложениеРазмер
metody_pokazatelnye_uravneniya.docx207.68 КБ

Предварительный просмотр:

Лекция: «Методы решения показательных уравнений».

1 . Показательные уравнения.

Уравнения, содержащие неизвестные в показателе степени, называются показательными уравнениями. Простейшим из них является уравнение а x = b, где а > 0, а ≠ 1.

2) При b > 0 используя монотонность функции и теорему о корне, уравнение имеет единственный корень. Для того, чтобы его найти, надо b представить в виде b = a с , а x = b с ⬄ x = c или x = log a b.

Показательные уравнения путем алгебраических преобразований приводят к стандартным уравнения, которые решаются, используя следующие методы:

  1. метод приведения к одному основанию ;
  2. метод оценки;
  3. графический метод;
  4. метод введения новых переменных;
  5. метод разложения на множители;
  6. показательно – степенные уравнения;
  7. показательные с параметром.

2 . Метод приведения к одному основанию.

Способ основан на следующем свойстве степеней: если равны две степени и равны их основания, то равны и их показатели, т.е. уравнение надо попытаться свести к виду

Примеры. Решить уравнение:

Представим правую часть уравнения в виде 81 = 3 4 и запишем уравнение, равносильное исходному 3 x = 3 4 ; x = 4. Ответ: 4.

Представим правую часть уравнения в виде и перейдем к уравнению для показателей степеней 3x+1 = 3 – 5x; 8x = 4; x = 0,5. Ответ: 0,5.

Представим правую часть данного уравнения в виде 1 = 5 0 и перейдем к уравнению для показателей степеней x 2 -3x+2 = 0, откуда легко получить решения x = 1 и x=2.

Заметим, что числа 0,2 , 0,04 , √5 и 25 представляют собой степени числа 5. Воспользуемся этим и преобразуем исходное уравнение следующим образом:

, откуда 5 -x-1 = 5 -2x-2 ⬄ — x – 1 = — 2x – 2, из которого находим решение x = -1. Ответ: -1.

  1. 3 x = 5. По определению логарифма x = log 3 5. Ответ: log 3 5.
  2. 6 2x+4 = 3 3x . 2 x+8 .

Перепишем уравнение в виде 3 2x+4 .2 2x+4 = 3 2x .2 x+8 , т.е. далее

2 2x+4-x-8 = 3 3x-2x-4 , т.е. 2 x-4 = 3 x-4 . (Уже ясно, что x = 4). Перепишем уравнение, разделив на 3 x-4 ≠ 0. Отсюда x – 4 =0, x = 4. Ответ: 4.

7 . 2∙3 x+1 — 6∙3 x-2 — 3 x = 9. Используя свойства степеней, запишем уравнение в виде 6∙3 x — 2∙3 x – 3 x = 9 далее 3∙3 x = 9, 3 x+1 = 3 2 , т.е. x+1 = 2, x =1. Ответ: 1.

Тест №1. с выбором ответа. Минимальный уровень.

1) 0 2) 4 3) -2 4) -4

1)17/4 2) 17 3) 13/2 4) -17/4

1) 3;1 2) -3;-1 3) 0;2 4) корней нет

1) 7;1 2) корней нет 3) -7;1 4) -1;-7

1) 0;2; 2) 0;2;3 3) 0 4) -2;-3;0

1) -1 2) 0 3) 2 4) 1

Тест №2 с выбором ответа. Общий уровень.

1) 3 2) -1;3 3) -1;-3 4) 3;-1

1) 14/3 2) -14/3 3) -17 4) 11

1) 2;-1 2) корней нет 3) 0 4) -2;1

1) -4 2) 2 3) -2 4) -4;2

1) 3 2) -3;1 3) -1 4) -1;3

Теорема о корне : если функция f(x) возрастает (убывает) на промежутке I, число а –любое значение принимаемое f на этом промежутке, тогда уравнение f(x) = а имеет единственный корень на промежутке I.

При решении уравнений методом оценки используется эта теорема и свойства монотонности функции.

Примеры. Решить уравнения: 1. 4 x = 5 – x.

Решение. Перепишем уравнение в виде 4 x +x = 5.

1. если x = 1, то 4 1 +1 = 5 , 5 = 5 верно, значит 1 – корень уравнения.

2. докажем, что он единственный.

Функция f(x) = 4 x – возрастает на R, и g(x) = x –возрастает на R => h(x)= f(x)+g(x) возрастает на R, как сумма возрастающих функций, значит x = 1 – единственный корень уравнения 4 x = 5 – x. Ответ: 1.

Решение. Перепишем уравнение в виде .

  1. если x = -1, то , 3 = 3-верно, значит x = -1 – корень уравнения.
  2. докажем, что он единственный.
  3. Функция f(x) = — убывает на R, и g(x) = -x – убывает на R=> h(x) = f(x)+g(x) – убывает на R, как сумма убывающих функций. Значит по теореме о корне, x = -1 – единственный корень уравнения. Ответ: -1.

Банк задач №2. Решить уравнение

4. Метод введения новых переменных.

Метод описан в п. 2.1. Введение новой переменной (подстановка) обычно производится после преобразований (упрощения) членов уравнения. Рассмотрим примеры.

Примеры. Р ешить уравнение: 1. .

Перепишем уравнение иначе:

Обозначим 5 x = t > 0, тогда т.е. 3t 2 – 2t – 1 =0, отсюда t 1 = 1, -не удовлетворяет условию t > 0. Итак, 5 x = 1 = 5 0 x = 0. Ответ: 0.

Решение. Перепишем уравнение иначе:

Обозначим тогда — не подходит.

t = 4 => Отсюда — иррациональное уравнение. Отмечаем, что

Решением уравнения является x = 2,5 ≤ 4, значит 2,5 – корень уравнения. Ответ: 2,5.

Решение. Перепишем уравнение в виде и разделим его обе части на 5 6x+6 ≠ 0. Получим уравнение

2x 2 -6x-7 = 2x 2 -6x-8 +1 = 2(x 2 -3x-4)+1, т.е

Корни квадратного уравнения – t 1 = 1 и t 2 ,

x 1 = -1, x 2 = 4. Ответ: -1, 4.

Решение . Перепишем уравнение в виде

и заметим, что оно является однородным уравнением второй степени.

Разделим уравнение на 4 2x , получим

Заменим 2t 2 – 5t +3 = 0 , где t 1 = 1, t 2 = .

Банк задач № 3. Решить уравнение

Тест № 3 с выбором ответа. Минимальный уровень.

1) -0,2;2 2) log 5 2 3) –log 5 2 4) 2

А 2 0,5 2x – 3 0,5 x +2 = 0.

1) 2;1 2) -1;0 3) корней нет 4) 0

1) 0 2) 1; -1/3 3) 1 4) 5

А 4 5 2x -5 x — 600 = 0.

1) -24;25 2) -24,5; 25,5 3) 25 4) 2

1) корней нет 2) 2;4 3) 3 4) -1;2

Тест № 4 с выбором ответа. Общий уровень.

1) 2;1 2) ½;0 3)2;0 4) 0

А 2 2 x – (0,5) 2x – (0,5) x + 1 = 0

1) -1;1 2) 0 3) -1;0;1 4) 1

1) 64 2) -14 3) 3 4) 8

1)-1 2) 1 3) -1;1 4) 0

1) 0 2) 1 3) 0;1 4) корней нет

5. Метод разложения на множители.

1. Решите уравнение: 5 x+1 — 5 x-1 = 24.

Решение. Перепишем уравнение в виде

Теперь в левой части уравнения вынесем за скобки общий множитель 5 x .

2. 6 x + 6 x+1 = 2 x + 2 x+1 + 2 x+2 .

Решение. Вынесем за скобки в левой части уравнения 6 x , а в правой части – 2 x . Получим уравнение 6 x (1+6) = 2 x (1+2+4) ⬄ 6 x = 2 x .

Так как 2 x >0 при всех x, можно обе части этого уравнения разделить на 2 x , не опасаясь при этом потери решений. Получим 3 x = 1 ⬄ x = 0.

Решение. Решим уравнение методом разложения на множители.

Выделим квадрат двучлена

Решение. Преобразуем члены уравнения и перегруппируем слагаемые

x = -2 – корень уравнения.

Уравнение x + 1 = можно решить либо методом оценки, либо графически.

x = 1 – второй корень исходного уравнения.

Банк задач №4. Решить уравнение

а) 48 x – 4 2x+1 – 3 x+1 + 12 = 0.

б) 5 2x-1 + 2 2x – 5 2x +2 2x+2 = 0.

в) 3 x – 2 x+2 = 3 x-1 – 2 x-1 – 2 x-3 .

г) 4 x – 5 2 x + 4 = 0.

Тест №5 Минимальный уровень.

А 1 5 x-1 +5 x -5 x+1 =-19.

1) 1 2) 95/4 3) 0 4) -1

А 2 3 x+1 +3 x-1 =270.

1) 2 2) -4 3) 0 4) 4

А 3 3 2x + 3 2x+1 -108 = 0. x=1,5

1) 0,2 2) 1,5 3) -1,5 4) 3

1) 1 2) -3 3) -1 4) 0

А 5 2 x -2 x-4 = 15. x=4

1) -4 2) 4 3) -4;4 4) 2

Тест № 6 Общий уровень.

А 1 (2 2x -1)(2 4x +2 2x +1)=7.

1) ½ 2) 2 3) -1;3 4) 0,2

1) 2,5 2) 3;4 3) log 4 3/2 4) 0

А 3 2 x-1 -3 x =3 x-1 -2 x+2 .

1) 2 2) -1 3) 3 4) -3

А 4

1) 1,5 2) 3 3) 1 4) -4

1) 2 2) -2 3) 5 4) 0

6. Показательно – степенные уравнения.

К показательным уравнениям примыкают так называемые показательно – степенные уравнения, т.е. уравнения вида (f(x)) g(x) = (f(x)) h(x) .

Если известно, что f(x)>0 и f(x) ≠ 1, то уравнение, как и показательное, решается приравниванием показателей g(x) = f(x).

Если условием не исключается возможность f(x)=0 и f(x)=1, то приходится рассматривать и эти случаи при решении показательно – степенного уравнения.

1. Решить уравнение

Решение. Для нахождения корней уравнения следует рассмотреть четыре случая:

  1. x + 1=x 2 – 1 ( показатели равны);
  2. x = 1(основание равно единице);
  3. x = 0 (основание равно нулю);
  4. x = -1(основание равно -1).

Решим первое уравнение: x 2 – x – 2 = 0, x = 2, x = -1.

x 1 = 2 => 2 3 = 2 3 – верно;

x 2 = -1 => (-1) 0 =(-1) 0 – верно;

x 3 = 1 => 1 2 = 1 0 – верно;

x 4 = 0 => 0 1 = 0 (-1) – не имеет смысла.

Уравнение вида f(x) g(x) = 1 равносильно совокупности двух систем

Решение. x 2 +2x-8 – имеет смысл при любых x , т.к. многочлен, значит уравнение равносильно совокупности

Банк задач №5. Решить уравнение

7. Показательные уравнения с параметрами.

1. При каких значениях параметра p уравнение 4 (5 – 3)2 +4p 2 –3p = 0 (1) имеет единственное решение?

Решение. Введем замену 2 x = t, t > 0, тогда уравнение (1) примет вид t 2 – (5p – 3)t + 4p 2 – 3p = 0. (2)

Дискриминант уравнения (2) D = (5p – 3) 2 – 4(4p 2 – 3p) = 9(p – 1) 2 .

Уравнение (1) имеет единственное решение, если уравнение (2) имеет один положительный корень. Это возможно в следующих случаях.

1. Если D = 0, то есть p = 1, тогда уравнение (2) примет вид t 2 – 2t + 1 = 0, отсюда t = 1, следовательно, уравнение (1) имеет единственное решение x = 0.

2. Если p1, то 9(p – 1) 2 > 0, тогда уравнение (2) имеет два различных корня t 1 = p, t 2 = 4p – 3. Условию задачи удовлетворяет совокупность систем

Подставляя t 1 и t 2 в системы, имеем

Рассмотрим более общую задачу.

Задача 2. Сколько корней имеет уравнение в зависимости от параметра a ?

Решение. Пусть тогда уравнение (3) примет вид t 2 – 6t – a = 0. (4)

Найдем значения параметра a, при которых хотя бы один корень уравнения (4) удовлетворяет условию t > 0.

Введем функцию f(t) = t 2 – 6t – a . Возможны следующие случаи.

Случай 1. Уравнение (4) имеет два различных положительных корня, если выполнятся условия

где t 0 — абсцисса вершины параболы и D — дискриминант квадратного трехчлена f(t);

Случай 2. Уравнение (4) имеет единственное положительное решение, если

D = 0, если a = – 9, тогда уравнение (4) примет вид (t – 3) 2 = 0, t = 3, x = – 1.

Случай 3. Уравнение (4) имеет два корня, но один из них не удовлетворяет неравенству t > 0. Это возможно, если

Таким образом, при a 0 уравнение (4) имеет единственный положительный корень . Тогда уравнение (3) имеет единственное решение

если a a a = – 9, то x = – 1;

Сравним способы решения уравнений (1) и (3). Отметим, что при решении уравнение (1) было сведено к квадратному уравнению, дискриминант которого — полный квадрат; тем самым корни уравнения (2) сразу были вычислены по формуле корней квадратного уравнения, а далее относительно этих корней были сделаны выводы. Уравнение (3) было сведено к квадратному уравнению (4), дискриминант которого не является полным квадратом, поэтому при решении уравнения (3) целесообразно использовать теоремы о расположении корней квадратного трехчлена и графическую модель. Заметим, что уравнение (4) можно решить, используя теорему Виета.

Решим более сложные уравнения.

Задача 3. Решите уравнение

Решение. ОДЗ: x1, x2.

Введем замену. Пусть 2 x = t, t > 0, тогда в результате преобразований уравнение примет вид t 2 + 2t – 13 – a = 0. (*)Найдем значения a , при которых хотя бы один корень уравнения (*) удовлетворяет условию t > 0.

Рассмотрим функцию f(t) = t 2 + 2t – 13 – a . Возможны случаи.

Случай 1. Для того чтобы оба корня уравнения (*) удовлетворяли неравенству t > 0, должны выполняться условия

где t 0 — абсцисса вершины f(t) = t 2 + 2t – 13 – a , D — дискриминант квадратного трехчлена f(t).

Система решений не имеет.

Случай 2. Для того чтобы только один корень уравнения (*) удовлетворял неравенству t > 0, должно быть выполнено условие f(0) a > – 13.

Случай 3. Найдем значения a, когда t 2, t 4.

откуда a 11, a – 5.

Ответ: если a > – 13, a 11, a 5, то если a – 13,

a = 11, a = 5, то корней нет.

Список используемой литературы.

1. Гузеев В.В. Системные основания образовательной технологии.

2. Гузеев В.В. Образовательная технология: от приема до философии.

М. «Директор школы»№4, 1996 г.

3. Гузеев В.В. Методы и организационные формы обучения.

М. «Народное образование», 2001 г.

4. Гузеев В.В. Теория и практика интегральной образовательной технологии.

М. «Народное образование», 2001 г.

5. Гузеев В.В. Одна из форм урока – семинара.

Математика в школе №2, 1987 г. с .9 – 11.

6. Селевко Г.К. Современные образовательные технологии.

М. «Народное образование», 1998 г.

7. Епишева О.Б. Крупич В.И. Учить школьников учиться математике.

М. «Просвещение», 1990 г.

8. Иванова Т.А. Как подготовить уроки – практикумы.

Математика в школе №6, 1990 г. с. 37 – 40.

9. Смирнова Н.М. Профильная модель обучения математике.

Математика в школе №1, 1997 г. с. 32 – 36.

10. Тарасенко Н.А. Некоторые способы организации практической работы.

Математика в школе №1, 1993 г. с. 27 – 28.

11. Утеева Р.А. Об одном из видов индивидуальной работы.

Математика в школе №2, 1994 г. с .63 – 64.

12. Хазанкин Р.Г. Развивать творческие способности школьников.

Математика в школе №2, 1989 г. с. 10.

13. Сканави М.И. Математика. Издатель В.М.Скакун, 1997 г.

14. Шабунин М.И. и др. Алгебра и начала анализа. Дидактические материалы для

10 – 11 классов. М. Мнемозина, 2000 г.

15. Кривоногов В.В. Нестандартные задания по математике.

М. «Первое сентября», 2002 г.

16. Черкасов О.Ю. Якушев А.Г. Математика. Справочник для старшеклассников и

поступающих в вузы. «А С Т -пресс школа», 2002 г.

17. Жевняк Р.М. Карпук А.А. Математика для поступающих в вузы.

Минск И РФ «Обозрение», 1996 г.

18. Письменный Д. Готовимся к экзамену по математике. М. Рольф, 1999 г.

19. Денищева Л.О. и др. Учимся решать уравнения и неравенства.

М. «Интеллект – Центр», 2003 г.

20. Денищева Л.О. и др. Учебно – тренировочные материалы для подготовки к Е Г Э.

М. «Интеллект – центр», 2003 г. и 2004 г.

21 Денищева Л.О. и др. Варианты КИМ. Центр тестирования МО РФ, 2002 г., 2003г.

22. Гольдберг В.В. Показательные уравнения. «Квант» №3, 1971 г.

23. Волович М. Как успешно обучать математике.

Математика, 1997 г. №3.

24 Окунев А.А. Спасибо за урок, дети! М. Просвещение, 1988 г.

25. Якиманская И.С. Личностно – ориентированное обучение в школе.

«Директор школы», 1996 г. сентябрь.

26. Лийметс Х. Й. Групповая работа на уроке. М. Знание, 1975 г.

По теме: методические разработки, презентации и конспекты

Методы решения показательных уравнений.

Урок повторения и закрепления знаний с применением ИКТ. На уроке осуществляется индивидуальный подход к учащимся, включающий каждого в осознанную учебную деятельность и групповая форма работы. В течен.

Методы решения показательных уравнений

Изучению методов решения показательных уравнений должно быть уделено значительное внимание. Показательные уравнения, изучаемые на 1 курсе в колледже, осваиваются обучающимися хуже, та.

Основные методы решения показательных уравнений

Основные методы решения показательных уравнений.

разработка урока «Методы решения показательных уравнений» в 11 классе

конспект открытого урока по математике в 11 классе.

Метод.разработка по теме: «Методы решения показательных уравнений»

В школьном курсе математики важное место отводится решению показательных уравнений и неравенств и системам, содержащие показательные уравнения. Впервые ученики встречаются с показательными уравнениями.

алгебраические методы решения показательных уравнений

метод уравнивания оснований, разложение на множители, введение новой переменной, свойство монотонности.

Методическая разработка открытого урока «Показательные уравнения. Методы решения показательных уравнений»

Методическая разработка открытого урока «Показательные уравнения. Методы решения показательных уравнений&quot.

Показательные уравнения

О чем эта статья:

6 класс, 7 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение показательного уравнения

Показательными называются уравнения с показательной функцией f(x) = a х . Другими словами, неизвестная переменная в них может содержаться как в основании степени, так и в ее показателе. Простейшее уравнение такого вида: a х = b, где a > 0, a ≠ 1.

Конечно, далеко не все задачи выглядят так просто, некоторые из них включают тригонометрические, логарифмические и другие конструкции. Но для решения даже простых показательных уравнений нужно вспомнить из курса алгебры за 6–7 класс следующие темы:

Если что-то успело забыться, советуем повторить эти темы перед тем, как читать дальнейший материал.

С точки зрения геометрии показательной функцией называют такую: y = a x , где a > 0 и a ≠ 1. У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a

Иногда в результате решения будет получаться несколько вариантов ответа, и в таком случае мы должны выбрать тот корень, при котором показательная функция больше нуля.

Свойства степеней

Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут упрощать сложные показательные уравнения.


источники:

http://nsportal.ru/shkola/algebra/library/2015/10/21/lektsiya-metody-resheniya-pokazatelnyh-uravneniy

http://skysmart.ru/articles/mathematic/pokazatelnye-uravneniya