Лемниската уравнение в декартовой системе координат

СПЕЦИАЛЬНЫЕ ПЛОСКИЕ КРИВЫЕ

ЛЕМНИСКАТЫ
Уравнение в полярных координатах:
r 2 = a 2 cos2θ

Уравнение в прямоугольных координатах:
(x 2 + y 2 ) 2 = a 2 (x 2 — y 2 )

Угол между AB’ или A’B и осью x = 45 o

Площадь одной петли = a 2 /2

ЦИКЛОИДА
Уравнения в параметрической форме:

Площадь одной дуги = 3πa 2

Длина дуги одной арки = 8a

Это кривая, описываемая точкой Р на окружности радиусом а, которая катится вдоль оси х.

ГИПОЦИКЛОИДЫ С ЧЕТЫРЬМЯ ОСТРИЯМИ
Уравнение в прямоугольных координатах:
x 2/3 + y 2/3 = a 2/3

Уравнения в параметрической форме:

Площадь, ограниченная кривой = 3πa 2 /8

Длина дуги целой кривой = 6a

Это кривая, описываемая точкой Р на окружности радиусом a/4, которая катится внутри окружности радиусом a.

КАРДИОИДА
Уравнение: r = a(1 + cosθ)

Площадь, ограниченная кривой = 3πa 2 /2

Длина дуги кривой = 8a

Это кривая, описываемая точкой Р на окружности радиусом a, которая катится снаружи окружности радиусом a. Эта кривая также является частным случаем улитки Паскаля.

ЦЕПНАЯ ЛИНИЯ
Уравнение:
y = a(e x/a + e -x/a )/2 = acosh(x/a)

Это кривая, по которой бы повисла цепь, подвешенная вертикально от точки А к В.

ТРЕХЛЕПЕСТКОВАЯ РОЗА
Уравнение: r = acos3θ

Уравнение r = acos3θ подобно кривой, полученной вращением против часовой стрелки по кривой 30 o или π/6 радиан.

В общем, r = acosnθ или r = asinnθ имеет n лепестков если n является нечетным.

ЧЕТЫРЕХЛЕПЕСТКОВАЯ РОЗА
Уравнение: r = acos2θ

Уравнение r = asin2θ подобно кривой, полученной вращением против часовой стрелки по кривой 45 o или π/4 радиан.

В общем r = acosnθ или r = asinnθ имеет 2n лепестков если n — четное.

ЭПИЦИКЛОИДА
Параметрические уравнения:

Это кривая, описываемая точкой Р на окружности радиуса b, когда она катится по внешней стороне окружности радиусом а. Кардиоида является частным случаем эпициклоиды.

ОБЩАЯ ГИПОЦИКЛОИДА
Параметрические уравнения:

Это кривая, описываемая точкой Р на окружности радиуса b, когда она катится по внешней стороне окружности радиусом а.

Если b = a/4, кривая является гипоциклоидой с четырьмя остриями.

ТРОХОИДА
Параметрические уравнения:

Это кривая, описываемая точкой Р на дистанции b от центра окружности с радиусом а, когда она катится по оси x.
Если b a, кривая имеет форму, показанную на рис. 11-11 и называется троходой.
Если b = a, кривая есть циклоидой.

ТРАКТРИСА
Параметрические уравнения:

Это кривая, описываемая конечной точкой Р натянутой струны длиной PQ, когда другой конец Q перемещается вдоль оси х.

ВЕРЗЬЕРА (ВЕРЗИЕРА) АНЬЕЗИ (ИНОГДА ЛОКОН АНЬЕЗИ)
Уравнение в прямоугольных координатах: y = 8a 3 /(x 2 + 4a 2 )

Параметрические уравнения:

В. На рисунке переменная линия OA пересекающая y = 2a и круг с радиусом a с центром (0,a) в A и B соотвественно. Любая точка P на «локоне» определяется построением линий, параллельных к осям x и y, и через B и A соответственно и определяющие точку пересечения P.

ДЕКАРТОВ ЛИСТ
Уравнение в прямоугольных координатах:
x 3 + y 3 = 3axy

Параметрические уравнения:

Площадь петли 3a 2 /2

Уравнение асимптоты: x + y + a = 0.

ЭВОЛЬВЕНТА ОКРУЖНОСТИ
Параметрические уравнения:

Эта кривая, описанная конечной точкой P струны, когда она разматывается с круга с радиусом a.

ЭВОЛЬВЕНТА ЭЛЛИПСА
Уравнение в прямоугольных координатах:
(ax) 2/3 + (by) 2/3 = (a 2 — b 2 ) 2/3

Параметрические уравнения:

Эта кривая является огибающей нормалью к эллипсу x 2 /a 2 + y 2 /b 2 = 1.

ОВАЛЫ КАССИНИ
Полярное уравнение: r 4 + a 4 — 2a 2 r 2 cos2θ = b 4 .

Это кривая, описываемая такой точкой P, что произведение ее расстояния от двух фиксированных точек [ расстояние 2a в сторону] есть постоянной b 2 .

Кривая, как на фигурах внизу, когда b a соответственно.

Если b = a, кривая есть лемниската

УЛИТКА ПАСКАЛЯ
Полярное уравнение: r = b + acosθ

Пусть OQ будет линией, соединяющей центр O с любой точкой Q на окружности диаметром a проходящей через O. Тогда кривая есть фокусом всех точек P, таких, что PQ = b.

Кривая, показанная на рисунках внизу когда b > a или b 2 = x 3 /(2a — x)

Параметрические уравнения:

Это кривая, описываемая такой точкой P, что расстояние OP = расстоянию RS. Используется в задаче удвоения куба, т.e. нахождения стороны куба, который имеет удвоенный объем заданного куба

СПИРАЛЬ АРХИМЕДА
Полярное уравнение: r = aθ

Уравнения кривых. Лемниската Бернулли.

Лемниската Бернулли — кривая, у которой произведение расстояний от каждой её точки до двух определенных точек (фокусов) неизменно и равняется квадрату половины расстояния между ними. Место пересечения лемнискаты с самой собой принято называть узловой или двойной точкой.

Форма лемнискаты похожа на восьмерку (символ бесконечности).

(х 2 + у 2 ) 2 = 2 а 2 (х 2 — у 2 ).

Полярное уравнение имеет вид:

Длина дуги лемнискаты между точками, для которых φ1= 0 и φ2= φ:

.

Площадь сектора ограниченного осью и радиус-вектором, соответствующим углу φ:

Площадь, локализованную лемнискатой:

Построение графика неявно заданной функции на примере лемнискаты Бернулли

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Тема: «Построение графика неявно заданной функции на примере лемнискаты Бернулли»

Проект
Гузь Ольги

Содержание.
1.Определение функции заданной неявно.
2.Определение лемнискаты.
3.Вывод уравнения лемнискаты.
4.Преобразование уравнения лемнискаты.
5.Уравнение лемнискаты в полярной системе координат.
6.Исследование уравнения лемнискаты.
7.Построение лемнискаты.
8. Применение лемнискаты.
9.Краткая историческая справка.

Определение неявно заданной функции
Рассмотрим функцию, заданную неявно уравнением F(x ,y)=0.
В зависимости от того, какой является функция F(x ,y)-алгебраической или трансцендентной,- кривые также делятся на алгебраические и трансцендентные.
Примеры, лемниската Бернулли.

Лемниската –
это кривая, у которой произведение расстояний каждой ее точки до двух заданных точек- фокусов -постоянно и равно квадрату половины расстояния между ними.

Пусть фокусы имеют координаты: F1(-a;0) и F2 (а;0); М(х, у) — произвольная точка геометрического места,
то по условию

Подставляя в это равенство выражения

получим искомое уравнение данного геометрического места

Вывод уравнения лемнискаты

Преобразование уравнения лемнискаты

Дальнейшая цель- получить уравнение лемнискаты Бернулли в более простом виде.
Возводя в квадрат обе части уравнения и группируя члены, находим

Преобразование уравнения лемнискаты
Преобразуя последнее уравнение, имеем:

или в окончательном виде

Мы получили уравнение лемнискаты в декартовой системе координат.

Построение графика лемнискаты

Т.к х и у входят в это уравнение только в чётных степенях, то лемниската симметрична относительно координатных осей.
Построить график данной функции затруднительно.
Запишем это же уравнение в полярной системе координат.

Уравнение лемнискаты в полярной системе координат

Поскольку х =ρ cos φ, у = ρ sinφ, х2+у2= ρ2, то уравнение лемнискаты в полярных координатах примет вид
ρ 4=2а2 ρ(cos2φ- sin2φ)
или

ρ 2=2а2 cos2φ
Из этого уравнения видно, что
при φ=0. Если φ увеличивается в пределах
от 0 до , то ρ уменьшается от до ρ=0.
Если , то ρ принимает мнимые
значения. Это означает, что на лемнискате нет точек, для которых φ меняется в указанных пределах.
Исследование уравнения лемнискаты

Построение лемнискаты
Построим график функции
при разных значениях а:

Построение лемнискаты
при а=-0,5

При построении кривых семейства овалов Кассини, промежуточным графиком является лемниската Бернулли.

1. 2. 3. 4.
Фигура выпуклая как эллипс.
Появляется вогнутая перемычка с четырьмя точками перегиба.
Перемычка смыкается, полученная фигура называется лемнискатой Бернулли.
Фигура разваливается на два овала.

В технике лемниската применяется, в частности, в качестве переходной кривой на закруглениях малого радиуса, как это имеет место на железнодорожных линиях в горной местности и на трамвайных путях.
Применение:

Существует два способа построения лемнискаты.
Первый способ — с помощью
двух угольников и нарисованной на листе бумаги окружности (рис.2).Вершина острого угла одного из угольников находится в центре окружности, вершина прямого угла другого -на окружности.
Способы построения лемнискаты
Рис.2

Второй способ — с помощью шарнирного устройства, две точки которого закреплены на плоскости (рис.3).
Способы построения лемнискаты
Рис.3

Лемниската Бернулли.
Ее автор – швейцарский математик Якоб Бернулли. Он дал этой кривой поэтическое название «лемниската».

В античном Риме так называли бантик, с помощью которого прикрепляли венок к голове победителя на спортивных играх.

БЕРНУЛЛИ Якоб I (1654-1705). Швейцарский математик. Работал в Базельском университете.
Работы посвящены математическому анализу, теории вероятностей и механике. В 1687 познакомился с первым мемуаром Лейбница по дифференциальному исчислению и применил его идеи к изучению ряда кривых, встречающихся в математике, механике, и выводу формулы радиуса кривизны плоской кривой. Ввел термин «интеграл».
Краткая биография

♣ Вирченко Н.А. и др.Справочник «Графики функций»; Киев: Наук. думка, 1979г;
♣ И.И.Валуцэ «Математика для техникумов»; Москва, Издательство «Наука», 1980г;
♣ Маркушевич А.И. «Замечательные кривые»; Москва 1978 г.
Список использованной литературы

Internet-ресурсы: WWW.Colledg.Ru;
WWW.5ballov.Ru; WWW.bankreferatov.Ru; WWW.rubricon.com.
Программное обеспечение: MS Word; MS Power Point;Windows Media; Nero Wave Editor; Сканер.

Список использованной литературы

Курс повышения квалификации

Охрана труда

  • Сейчас обучается 106 человек из 42 регионов

Курс профессиональной переподготовки

Охрана труда

  • Сейчас обучается 228 человек из 54 регионов

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • Сейчас обучается 354 человека из 63 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 569 235 материалов в базе

Другие материалы

  • 28.12.2020
  • 929
  • 13
  • 28.12.2020
  • 997
  • 0
  • 28.12.2020
  • 1168
  • 0

  • 28.12.2020
  • 1274
  • 1
  • 28.12.2020
  • 1787
  • 4
  • 28.12.2020
  • 1225
  • 0
  • 28.12.2020
  • 1289
  • 0
  • 23.12.2020
  • 1328
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 10.07.2020 774
  • PPTX 1.1 мбайт
  • 3 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Якимова Светлана Семеновна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 1 год и 1 месяц
  • Подписчики: 0
  • Всего просмотров: 27996
  • Всего материалов: 247

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Воронеже продлили удаленное обучение для учеников 5-11-х классов

Время чтения: 1 минута

У 76% российских учителей оклад ниже МРОТ

Время чтения: 2 минуты

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

В России могут объявить Десятилетие науки и технологий

Время чтения: 1 минута

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://www.calc.ru/Uravneniya-Krivykh-Lemniskata-Bernulli.html

http://infourok.ru/postroenie-grafika-neyavno-zadannoj-funkcii-na-primere-lemniskaty-bernulli-4730292.html