Линейное диофантово уравнение с двумя неизвестными примеры

Линейное диофантово уравнение и 4 способа его решения

Разделы: Математика

Првило 1. Если с не делится на d, то уравнение ах + ву = с не имеет решений в целых числах. Н.О.Д.(а,в) = d.

Правило 2. Чтобы найти решение уравнения ах + ву = с при взаимно-простых а и в, нужно сначала найти решение (Хо ; уо) уравнения ах + ву = 1; числа СХо , Суо составляют решение уравнения ах + ву = с.

Решить в целых числах (х,у) уравнение

Первый способ. Нахождение частного решения методом подбора и запись общего решения.

Знаем, что если Н.О.Д.(а;в) =1, т.е. а и в взаимно-простые числа, то уравнение (1)

имеет решение в целых числах х и у. Н.О.Д.(5;8) =1. Методом подбора находим частное решение: Хо = 7; уо =2.

Итак, пара чисел (7;2) — частное решение уравнения (1).

Значит, выполняется равенство: 5 x 7 – 8 x 2 = 19 … (2)

Вопрос: Как имея одно решение записать все остальные решения?

Вычтем из уравнения (1) равенство (2) и получим: 5(х -7) – 8(у — 2) =0.

Отсюда х – 7 = . Из полученного равенства видно, что число (х – 7) будет целым тогда и только тогда, когда (у – 2) делится на 5, т.е. у – 2 = 5n, где n какое-нибудь целое число. Итак, у = 2 + 5n, х = 7 + 8n, где n Z.

Тем самым все целые решения исходного уравнения можно записать в таком виде:

n Z.

Второй способ. Решение уравнения относительно одного неизвестного.

Решаем это уравнение относительно того из неизвестных, при котором наименьший (по модулю) коэффициент. 5х — 8у = 19 х = .

Остатки при делении на 5: 0,1,2,3,4. Подставим вместо у эти числа.

Если у = 0, то х = =.

Если у =1, то х = =.

Если у = 2, то х = = = 7 Z.

Если у =3, то х = =.

Если у = 4 то х = =.

Итак, частным решением является пара (7;2).

Тогда общее решение: n Z.

Третий способ. Универсальный способ поиска частного решения.

Для решения применим алгоритм Евклида. Мы знаем, что для любых двух натуральных чисел а, в, таких, что Н.О.Д.(а,в) = 1 существуют целые числа х,у такие, что ах + ву = 1.

1. Сначала решим уравнение 5m – 8n = 1 используя алгоритм Евклида.

2. Затем найдем частное решение уравнения (1)по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: 1 = 5m – 8n. Для этого используем алгоритм Евклида.

8 = 5 1 + 3.

5 = 3

3 = 2 .

Из этого равенства выразим 1. 1 = 3 — 2 = 3 – (5 — 3 ) =

= 3 — 5 = 3 = (8 — 5 — 5 82 -5

= 5(-2). Итак, m = -3, n = -2.

2. Частное решение уравнения (1): Хо = 19m; уо =19n.

Отсюда получим: Хо =19; уо =19 .

Пара (-57; -38)- частное решение (1).

3. Общее решение уравнения (1): n Z.

Четвертый способ. Геометрический.

1. Решим уравнение 5х – 8у = 1 геометрически.

2. Запишем частное решение уравнения (1).

3. Запишем общее решение данного уравнения (1).

Отложим на окружности последовательно друг за другом равные дуги, составляющие

-ю часть полной окружности. За 8 шагов получим все вершины правильного вписанного в окружность 8-угольника. При этом сделаем 5 полных оборотов.

На 5 – ом шаге получили вершину, соседнюю с начальной, при этом сделали 3 полных оборота и еще прошли — ю часть окружности, так что х = у + .

Итак, Хо = 5, уо =3 является частным решением уравнения 5х – 8у = 1.

2. Частное решение уравнения (1): Хо = 19 уо =19

3. Общее решение уравнения (1): n Z.

Линейное диофантово уравнение с двумя неизвестными примеры

Кратко о теории чисел.

§1. Основные понятия и теоремы
Деление с остатком
Наибольший общий делитель
Взаимно простые числа
Алгоритм Евклида
Линейные диофантовы уравнения с двумя неизвестными
Простые числа и
§2. Цепные дроби
Разложение чисел в цепные дроби
Вычисление подходящих дробей
Свойства подходящих дробей
Континуанты. Анализ алгоритма Евклида
Еще кое-что о цепных дробях (приближение чисел, периодичность, теорема Эрмита)
§3. Важнейшие функции в теории чисел
Целая и дробная часть
Мультипликативные функции
Примеры мультипликативных функций
z-функция Римана
§4. Теория сравнений
Определения и простейшие свойства
Полная и приведенная системы вычетов
Теорема Эйлера и теорема Ферма
Сравнения первой степени
Сравнения любой степени по простому модулю
Сравнения любой степени по составному модулю
Сравнения второй степени. Символ Лежандра
Дальнейшие свойства символа Лежандра. Закон взаимности Гаусса
§5. Трансцендентные числа
Мера и категория на прямой
Числа Лиувилля
Число e

= 2,718281828459045.

Число pi

= 3,141592653589793.

Трансцендентность значений функции e в степени z
Литература

§ 1. Основные понятия и теоремы

Пункт 5. Линейные диофантовы уравнения с двумя неизвестными.

Обычно, произвольное уравнение (но, как правило, все-таки с целыми коэффициентами) получает титул «диофантово», если хотят подчеркнуть, что его требуется решить в целых числах, т.е. найти все его решения, являющиеся целыми. Имя Диофанта — выдающегося Александрийского математика — появляется здесь не случайно. Диофант интересовался решением уравнений в целых числах еще в третьем веке нашей эры и, надо сказать, делал это весьма успешно.

Отступление про Диофанта и его исторический след.

Третий и последний период античного общества — период господства Рима. Рим завоевал Сиракузы в 212 году, Карфаген — в 146 году, Грецию — в 146, Месопотамию — в 46, Египет — в 30 году до нашей эры. Огромные территории оказались на положении колоний, но римляне не трогали их культуры и экономического устройства пока те исправно платили налоги и поборы. Установленный римлянами на столетия мир, в отличие от всех последующих великих миров и рейхов, принес всей завоеванной территории самый длинный период безвоенного существования, торговли и культурного обмена.

Александрия оказалась центром античной математики. Велись оригинальные исследования, хотя компилирование, пересказ и комментирование становились и стали основным видом научной деятельности. Александрийские ученые, если угодно, приводили науку в порядок, собирая разрозненные результаты в единое целое, и многие труды античных математиков и астрономов дошли до нас только благодаря их деятельности. Греческая наука с ее неуклюжим геометрическим способом выражения при систематическом отказе от алгебраических обозначений угасала, алгебру и вычисления (прикладную математику) александрийцы почерпнули с востока, из Вавилона, из Египта.

Основной труд Диофанта (ок. 250 г.) — «Арифметика». Уцелели только шесть книг оригинала, общее их число — предмет догадок. Мы не знаем, кем был Диофант, — возможно, что он был эллинизированный вавилонянин. Его книга — один из наиболее увлекательных трактатов, сохранившихся от греко-римской древности. В ней впервые встречается систематическое использование алгебраических символов, есть особые знаки для обозначения неизвестного, минуса, обратной величины, возведения в степень. Папирус N 620 Мичиганского университета, купленный в 1921 году, принадлежит эпохе Диофанта и наглядно это подтверждает. Среди уравнений, решаемых Диофантом, мы обнаруживаем такие, как x 2 26 y 2 = 1 и x 2 — 30 y 2 = 1, теперь известные нам как частные случаи «уравнения Пелля», причем Диофант интересуется их решениями именно в целых числах.

Книга Диофанта неожиданно оказала еще и огромное косвенное влияние на развитие математической науки последних трех столетий. Дело в том, что юрист из Тулузы Пьер Ферма (1601 — 1665), изучая «Арифметику» Диофанта, сделал на полях этой книги знаменитую пометку: «Я нашел воистину удивительное доказательство того, что уравнение x n + y n = z n при n > 2, не имеет решений в целых числах, однако поля этой книги слишком малы, чтобы здесь его уместить». Это одно из самых бесполезных математических утверждений получило название «Великой теоремы Ферма» и, почему-то, вызвало настоящий ажиотаж среди математиков и любителей (особенно после назначения в 1908 году за его доказательство премии в 100 000 немецких марок). Попытки добить эту бесполезную теорему породили целые разделы современной алгебры, алгебраической теории чисел, теории функций комплексного переменного и алгебраической геометрии, практическая польза от которых уже не подлежит никакому сомнению. Сама теорема, кажется, благополучно доказана в 1995 году; Пьер Ферма, конечно, погорячился на полях «Арифметики», ибо он физически не мог придумать подобного доказательства, требующего колоссальной совокупности математических знаний. Элементарного доказательства великой теоремы Ферма пока никто из жителей нашей планеты найти не смог, хотя над его поиском бились лучшие умы последних трех столетий. Однако, до сих пор тысячи психически нездоровых любителей-«ферматистов» в жажде славы и денег бомбят своими письмами академические институты и университеты и почти ежегодно один из сотрудников кафедры алгебры и дискретной математики Уральского госуниверситета, где я работаю, вынужден вести с таким психом дипломатическую переписку на заранее заготовленном бланке:

«Уважаемый. В Вашем доказательстве на странице №. в строке №. содержится ошибка. «.

Пусть требуется решить линейное диофантово уравнение:

Попробуем порассуждать, глядя на это уравнение.

Теперь и ежику ясно, что у такого уравнения имеется решение (пара целых чисел x и y ) только тогда, когда d | c . Поскольку очень хочется решать это уравнение дальше, то пусть d | c . Поделим обе части уравнения на d , успокоимся, и всюду далее будем считать, что ( a , b ) = 1. Так можно.

Рассмотрим несколько случаев.

Случай 1. Пусть c = 0, уравнение имеет вид ax + by = 0 — « однородное линейное диофантово уравнение». Немножко потрудившись, находим, что

x = —b ay .

Так как x должен быть целым числом, то y = at , где t — произвольное целое число (параметр). Значит x = — bt и решениями однородного диофантова уравнения ax + by = 0 являются все пары вида <- bt , at >, где t = 0; ±1; ±2;. Множество всех таких пар называется общим решением линейного однородного диофантова уравнения, любая же конкретная пара из этого множества называется частным решением.

Дорогие читатели, не правда ли, что все названия уже до боли знакомы? «Однородное уравнение», «общее решение» — все это мы уже слышали и в курсе линейной алгебры и в лекциях по дифференциальным уравнениям. При разборе следующего случая эта аналогия буквально выпирает на первый план, что, конечно, не случайно, но исследование единства великого государства линейности на материке математики выходит за рамки этой скромной книжки.

Случай 2. Пусть теперь c 0. Этот случай закрывается следующей теоремой.

Теорема. Пусть ( a , b ) = 1, < x 0 , y 0 > — частное решение диофантова уравнения ax + by = c . Тогда его общее решение задается формулами:

м
н
о
x = x 0bt
y = y 0 + at .

Таким образом, и в теории линейных диофантовых уравнений общее решение неоднородного уравнения есть сумма общего решения соответствующего однородного уравнения и некоторого (любого) частного решения неоднородного уравнения. Вот оно — проявление единства линейного мира! (Однажды, перед экзаменом по дифференциальным уравнениям, мне снился кошмар, будто все линейные пространства решений сговорились между собой и требовали от меня прибавить к ним частное решение, так как они не хотели содержать нулевой вектор, а хотели быть линейными многообразиями. Я отказался, а наутро, на экзамене, мне досталась однородная система!)

Доказательство. То, что правые части указанных в формулировке теоремы равенств действительно являются решениями, проверяется их непосредственной подстановкой в исходное уравнение. Покажем, что любое решение уравнения ax + by = c имеет именно такой вид, какой указан в формулировке теоремы. Пусть < x * , y *> — какое-нибудь решение уравнения ax + by = c . Тогда ax * + by * = c , но ведь и ax 0 + by 0 = c . Следуя многолетней традиции доказательства подобных теорем, вычтем из первого равенства второе и получим:

— однородное уравнение. Далее, глядя на случай 1, рассмотрение которого завершилось несколькими строками выше, пишем сразу общее решение: x *- x 0 = — bt , y *- y 0 = at , откуда моментально, используя навыки третьего класса средней школы, получаем:

м
н
о
x * = x 0- bt ,
y * = y 0 + at.

«Все это, конечно, интересно», — скажет читатель, — «Но как же искать то самое частное решение < x 0 , y 0 >, ради которого и затеяна вся возня этого пункта и которое, как теперь выясняется, нам так нужно?». Ответ до глупости прост. Мы договорились, что ( a , b ) = 1. Это означает, что найдутся такие u и v из Z , что au + bv = 1 (если вы это забыли, вернитесь в пункт 4), причем эти u и v мы легко умеем находить с помощью алгоритма Евклида. Умножим теперь равенство au + bv = 1 на c и получим: a ( uc ) + b ( vc ) = c , т.е. x 0 = uc , y 0 = vc . Вот и все!

Пример. Вы — хроноп, придуманный Хулио Кортасаром в книжке «Из жизни хронопов и фамов». Вам нужно расплатиться в магазине за синюю пожарную кишку, ибо красная в хозяйстве уже давно есть. У вас в кармане монеты достоинством только в 7 и 12 копеек, а вам надо уплатить 43 копейки. Как это сделать? Решаем уравнение:

Включаем алгоритм Евклида:

12 = 7· 1 + 5
7 = 5· 1 + 2
5 = 2· 2 + 1
2 = 1· 2

Значит, наибольший общий делитель чисел 7 и 12 равен 1 , а его линейное выражение таково:

1 = 5 — 2· 2 = 5 — (7 — 5) · 2 = (12 — 7) — (7 — (12 — 7) · 2) = 12· 3 + 7· (- 5),

т.е. u = — 5, v = 3. Частное решение:

Итак, вы должны отобрать у кассира 215 семикопеечных монет и дать ему 129 двенадцатикопеечных. Однако процедуру можно упростить, если записать общее решение неоднородного диофантова уравнения:

и, легко видеть, что при t = — 18, получаются вполне разумные x = 1, y = 3, поэтому дубасить кассира необязательно.

1 . Решите диофантовы уравнения:

2 . Для каждого целого z решите в целых числах уравнение 2 x + 3 y = 5 z .

3 . Решите уравнение 3 sin 7 x + cos 20 x = 4, а потом предложите решить его знакомому школьнику. Кто быстрее?

4 . Сколькими различными способами можно расплатиться за вкуснейшую девяностосемикопеечную жевательную резинку лишь пятаками да копейками?

Диофантовы уравнения — методы, алгоритмы и примеры решения

Основные понятия

Решением линейных уравнений начали заниматься ещё в Древнем Вавилоне и Греции. Особого успеха в их вычислении смог добиться древнегреческий философ и математик правителя Греции — Диофант Александрийский. В третьем веке до нашей эры он издал свой труд под названием «Арифметика», в котором описал возможные решения различных математических задач. Большая часть их была посвящена уравнениям, которые и были позже названы в его честь.

Диофантовыми уравнениями принято называть линейные выражения вида: a1x1 + a2x2 + … + anxn = c. В этих равенствах икс обозначает искомое неизвестное, а коэффициенты a и c являются целыми числами. Греческий учёный предложил несколько способов решения таких уравнений:

  • полный перебор;
  • разложение на множители;
  • выражение одной переменной через другую с выделением целой части при решении системы;
  • поиск частного решения;
  • алгоритм Евклида;
  • геометрический метод.

Методы решения диофантовых уравнений позволяют найти целые или рациональные решения для алгебраических равенств или их систем. Но при этом число переменных в выражении не должно превышать двух. Как правило, такие уравнения имеют несколько решений, поэтому их другое популярное название — неопределённые.

Чтобы воспользоваться способами, предложенными математиком при рассмотрении задач, нужно попробовать проанализировать исходные данные и свести их к линейному равенству или системе уравнений. При этом коэффициенты, как стоящие возле неизвестных, так и свободные, должны быть целыми. Ответом же должно получиться тоже целое число, обычно натуральное.

Чтобы понимать возможности применения уравнений в тех или иных исследовательских вычислениях, необходимо предварительно ответить на два вопроса: могут ли быть у задания целочисленные решения и ограничено ли число действительных ответов. Поэтому использование способов подходит только для простейших уравнений первой и второй степени. Для выражений высших порядков, например, 4x 3 + 6Y 3 — 2z 4 = 23, определить, является ли решением целое число, довольно проблематично.

Методы решения

Для начала следует рассмотреть однородное линейное уравнение вида: ax + by = 0. Это простой многочлен первой степени. Для него характерно то, что если для коэффициентов можно подобрать один делитель, то обе части возможно сократить на его величину не нарушив принципы записи. Наиболее простым способом определить этот делитель является метод разработанный великим математиком своего времени Евклидом.

Решение диофантовых уравнений по алгоритму Евклида заключается в нахождении общего делителя натуральных чисел с использованием деления с остатком. Для этого нужно взять большее число и просто разделить его на наименьшее. Затем полученный остаток нужно снова разделить на меньшее из чисел. Это действие необходимо повторять до тех пор, пока результатом операции не станет единица, то есть выполнится деление без остатка. Последнее полученное число и будет являться наибольшим общим делителем (НОД).

Существует три теоремы, которые используются при решении уравнений первой степени:

  1. В случае, когда НОД равняется единице, выражение будет обязательно иметь хотя бы одну пару целого решения.
  2. Если коэффициенты выражения больше единицы, и при этом свободный член нельзя нацело разделить на них, то корни равенства не имеют целого значения.
  3. Когда коэффициенты равняются единице, все решения, состоящие из целых чисел, находятся с помощью формул: x = x0c + bt и y = y0c — at, где: х0, y0 — целые ответы, t — множество чисел.

Например, пусть есть равенство вида 54x + 37y = 1. Используя то, что a = 54, а b =37, можно записать: 54 — 37 *1 = 17. Теперь можно выполнить следующие вычисления:

  • 37 — 17 * 2 = 3;
  • 71 — 3 * 5 = 2;
  • 3 — 2 * 1 = 1.

Далее нужно выразить значения коэффициентов через остаток:

  • 3 — (17 — 3 * 5) = 1;
  • 1 = 17 — 3 * 4;
  • 1 = 17 — (37- 17 * 2) * 4;
  • 1 = 17 — 37 * 4+17 * 8;
  • 1 = 17 * 9 — 37 * 4;
  • 1 = (54 — 37 * 1) * 9 — 37 * 4;
  • 1 = 54 * 9 — 37 * 9 — 37 * 4;
  • 1 = 54 * 9 — 37 * 13;
  • 1 = 54х + 37у.

Исходя из приведённого следует, что x0 равняется девяти, а игрек нулевой — минус тринадцать. Таким образом, рассматриваемое уравнение будет иметь вид:

Этим же способом можно и определить, что целых решений в выражении быть не может, как, например, для равенства 17x + 36y = 7. В этом случае НОД не делится на два, поэтому и целых решений нет.

Способ подбора и разложения

Метод подбора используется для нахождения корней простых уравнений. Пожалуй, это самый простой способ, но вместе с тем и требующий повышенного внимания и большого количества операций. Его суть заключается в полном переборе всех допустимых значений переменных, входящих в равенство. Например, эта задача которая будет интересна и школьникам, только знакомящимся с уравнениями.

Пусть имеется зоопарк, в котором находятся птицы и млекопитающие. Всего у животных двадцать лап. Определить, какое количество может быть птиц, а какое — млекопитающих. Для нахождения ответа методом перебора следует принять число одних животных, равное x (пусть это будут четырёхпалые), а других — y (птицы). Таким образом, получится уравнение: 2x + 4 y = 20. Для простоты выражение можно упростить, сократив на два: x + 2y = 10.

Полученное выражение нужно преобразовать, разделив неизвестные знаком равно: x = 10 — 2y. Зная, что ответом могут быть только целые числа, вместо y нужно пробовать подставлять возможные варианты: 1 — 8; 2 — 6; 3 — 4; 4 — 2; 5 — 0. Это и есть все возможные ответы на поставленную задачу.

Разложение выражения на множители можно выполнять различными способами. Вот основные из них:

  • вынесение общего множителя: если каждый член многочлена можно разделить на одно и то же число, то его можно вынести за скобку;
  • использование формулы сокращённого умножения: оно выполняется по формуле: an — bn = (a-b) * (an-1 + an-2 * b +… a2bn-3 + abn-2 + bn-1);
  • применение свойства полного квадрата: это самый эффективный способ, заключающийся в вынесении полного квадрата за скобку с последующим использованием формул разности квадратов;
  • группировкой — в его основе лежит вынесение общего множителя таким образом, чтобы появилась возможность перегруппировки выражения, после которой получится значение, присутствующее во всех членах равенства.

Например, пусть имеется нелинейное уравнение вида: 8×4 + 32×2 = 8. Все его члены можно перенести в одну сторону, а равенство приравнять к нулю, при этом сократив каждый член на восемь: x4 + 4×2 — 1 = 0. Для преобразования такого выражения удобнее всего применить метод квадратов. Таким образом, уравнение можно расписать следующим образом: x4 + 2 * 2 * x2 + 4 — 4 — 1 = (x2 + 2)2 — 5 = (x2 + 2 — √5) * (x2 + 2 +√5).

Геометрический подход

Этот метод удобно применять для системы уравнений. Его принцип построен на изображении графиков уравнений и определения их точки пересечения. При этом координаты этой точки и будут являться корнями рассматриваемой системы.

Из этого утверждения можно сделать следующие выводы:

  • если графики уравнений представляют пересекающиеся прямые, то решением будет только одно число;
  • когда графики уравнений не имеют общих точек, то решения у системы уравнений нет;
  • в случае, когда графики совпадают, система будет иметь бесконечное множество корней.

Применять этот метод можно для уравнений, порядок которых не превышает единицы. В равенствах высшего порядка построить график обычно сложно. Например, дана система:

Из первого и второго равенства можно выразить одно неизвестное через другое, используя несколько произвольных чисел. Затем, подставляя их вместо неизвестного, можно построить график. Как только две прямые будут построены, можно будет определить, что точка их пересечения имеет координаты -2; 5. Эти значения и будут искомыми корнями.

Занимательная задача

На самом деле примеры диофантовых уравнений можно встретить в повседневной жизни. Например, при покупке чего-либо в магазине. На эту тему математики смогли придумать интересные задачи, обычно предлагающиеся ученикам на дополнительных занятиях.

Вот одна из них, появившаяся из реальной истории. Однажды математик пришёл в магазин приобрести свитер. Его цена составляла 19 рублей. У учёного же были с собой только купюры номиналом три рубля, а у кассира — пятирублёвки. Задача состоит в том, чтобы выяснить, сможет ли состояться сделка. Иными словами, необходимо найти, сколько нужно математику дать купюр, и какое их количество он получит от кассира.

Рассуждать нужно следующим образом. В задачи есть два неизвестных: количество трёхрублёвых и пятирублёвых купюр. Поэтому можно составить уравнение: 3x — 5y = 19. По сути, уравнение с двумя неизвестными может иметь бесчисленное число решений, но не всегда из них может найтись хотя бы одно целое положительное.

Итак, зная, что неизвестные должны быть целыми положительными числами, нужно выразить неизвестное с меньшим коэффициентом через остальные члены. Получится равенство: 3 x = 19 + 5 y. Левую и правую часть можно разделить на три, а после выполнить простейшие преобразования: x = (19 + 5y) / 3 = 6 + y + (1 + 2y) / 3. Учитывая, что неизвестные и свободный член это целые числа, выражение (1 + 2y) / 3 можно заменить буквой r, также являющимся каким-то целым числом.

Тогда уравнение можно переписать как x = 6 + y + t. Отсюда t = (1 + 2y) / 3 или y = t + (t — 1) / 2. Снова можно сделать вывод, что (t — 1) / 2 — какое-то целое число. Если заменить его на t1, выражение примет вид: y = t + t1.

Подставив t = 2t1 + l в равенство можно получить, что x = 8 + 5t1, а y = 1 + 3t1. Таким образом, решением уравнения будут полученные равенства. Исходя из того, что результат должен быть положительным, равенства можно переписать в неравенства вида:8 + 5t1> 0, 1 + 3t1 > 0. Отсюда определить диапазон, ограничивающий t1. Беря во внимание только плюсовую часть диапазона, можно сделать заключение, что возможные варианты решения лежать в пределе от нуля до плюс бесконечности.

Подставляя по очереди числа, можно определить значения x и y. Искомый ряд будет выглядеть следующим образом: 1 = 8, 13, 18, 23, …, n; <у = 1 + 3t>1 = 1, 4, 7, 10,…, m. То есть математик, дав восемь купюр, получит одну на сдачу, а если он отдаст 13 купюр, то продавец должен будет ему выдать четыре пятирублёвки. Этот ряд можно продолжать до бесконечности.

Использование онлайн-калькулятора

Существуют сайты, рассчитывающие линейные уравнения в автоматическом режиме. Они называются математическими онлайн-калькуляторами. Пользователю, желающему воспользоваться их услугами, нужно иметь лишь подключение к интернету и любой веб-браузер.

Свои услуги сервисы предоставляют бесплатно. При этом часто на их страницах содержится краткий теоретический материал, посвящённый решению диофантовых уравнений. Кроме того, пользователю предоставляется возможность ознакомиться с решением типовых примеров.

Из нескольких десятков таких сайтов на русском языке можно отметить следующие:

Все приведённые сайты имеют интуитивно понятный интерфейс и бесплатны. После того как пользователь введёт в предложенную форму нужные уравнения и запустит расчётчик, онлайн-сервисы не только выдадут ответ, но и выведут на экран пошаговое решение с объяснениями. Таким образом, эти сервисы помогают не только быстро и верно найти решение, но и дают возможность пользователю понять принципы вычисления, проверить самостоятельно выполненный расчёт.


источники:

http://alexhvorost.narod2.ru/numbers/5.html

http://nauka.club/matematika/diofantovy-uravneniy%D0%B0.html

Задачки