Линейное уравнение ax b cx d

Линейное уравнение ax b cx d

Линейные уравнения и неравенства с параметром

Уравнение вида

ax + b = 0,(1)

где a,b О R, x — переменная, называется уравнением первой степени (линейным уравнением).

Ниже приведены примеры линейных уравнений:

a) 2x + 6 = 0,где a = 2, b = 6;
b) x — 2 = 0где a = 1, b = -2;
c) 0·x + 0 = 0,где a = b = 0;
d) 0·x + 1 /3 = 0,где a = 0, b = 1 /3;
e) — 1 /2x = 0,где a = — 1 /2; b = 0.

Уравнение (1) равносильно уравнению ax = —b откуда следует следующее утверждение.

Утверждение 1.

  1. Если a ≠ 0, то уравнение (1) имеет единственное решение x = — b /a;
  2. Если a = 0, b ≠ 0, то множество решений уравнения (1) пусто;
  3. Если a = 0, b = 0, то любое действительное число является решением уравнения (1).

Таким образом, приведенные выше линейные уравнения решаются следующим образом:

a) x = — 6 /2, то есть x = -3;
b) x = 2;
c) любое действительное число является решением данного уравнения;
d) уравнение не имеет решений;
e) x = 0.

Замечание 2. Уравнение (ax + b)(cx + d) = 0 где a, b, c, d О R, сводится к совокупности линейных уравнений

ax + b = 0,
cx + d = 0.

Пример 1. Решить уравнения

a) ,c) —x + 2 = 2 — x,
b) 2x + 1 = 2x + 3,d) (2x + 4)(3x — 1) = 0.

Решение. a) x = 6.

b) 2x + 1 = 2x + 3 Ы 2x — 2x = 3 — 1 Ы 0·x = 2 откуда следует, что уравнение не имеет решений.

c) —x + 2 = 2 — x Ы —x + x = 2 — 2 Ы 0·x = 0, следовательно, любое действительное число является решением уравнения.

d) (2x + 4)(3x — 1) = 0 Ы
2x + 4 = 0,
3x — 1 = 0,
Ы
x1 = -2,
x2 = 1 /3.

В дальнейшем будут рассматриваться линейные уравнения с параметрами. Под параметром понимается (смотрите тему Уравнения с параметром) фиксированное (но неизвестное) число. Как правило, параметр обозначается первыми буквами латинского алфавита.

Пример 2. Решить уравнения

a) ax = 1;e)
b) a 2 x — 1 = x + a;f)
c) ax + b = cx + d;g)
d) ;

Решение. a) Применяя утверждение 1, получим:

при a ≠ 0 уравнение имеет единственное решение, x = 1 /a;

при a = 0 уравнение примет вид 0·x = 1 и, следовательно, оно не имеет решений.

Ответ: если a О R\<0>, то x = 1 /a; если a = 0, то уравнение не имеет решений.

b) После элементарных преобразований получим: a 2 x — 1 = x + a Ы a 2 xx = a + 1 Ы x(a 2 — 1) = a + 1.

откуда, применяя утверждение 1, получим:

  1. если a 2 -1 ≠ 0, то есть a ≠ ± 1, то или
  2. если a = 1, то уравнение примет вид 0·x = 2 и, следовательно, не имеет решений;
  3. если a = -1, то уравнение примет вид 0·x = 0, и, следовательно, любое действительное число является решением этого уравнения.

c) Перепишем уравнение следующим образом (ac)x = db, откуда следует:

  1. если ac ≠ 0, то есть ac, то уравнение имеет единственное решение
  2. если a = c и db ≠ 0, то уравнение примет вид 0·x = db ( ≠ 0) и, следовательно, оно не имеет решений;
  3. если a = c и d = b, то уравнение примет вид 0·x = 0, и, следовательно, множество его решений есть R

d) Область допустимых значений (ОДЗ) уравнения есть x ≠ 4. В ОДЗ уравнение решается следующим образом:

Ы
x-2a = 0,
x ≠ 4
Ы
x = 2a,
x ≠ 4.

Таким образом, если 2a ≠ 4, то есть a ≠ 2, то уравнение имеет единственное решение x = 2a, а если a = 2, то уравнение не имеет решений.

  • если a ≠ -1, a ≠ 2, — a /2 ≠ -1, — a /2 ≠ 2, то есть a О R\<-1;2;-4>, то уравнение имеет два решения x1 = a и x2 = — a /2 (если a = 0, решения совпадают);
  • если a = -1, то уравнение имеет единственное решение x = 1 /2;
  • если a = 2, то уравнение не имеет решений;
  • если a = -4, то уравнение имеет единственное решение x = -4.
  • f) Если a = 0 или b = 0, то уравнение не имеет смысла. Пусть a·b ≠ 0. Тогда уравнение равносильно следующему x(b + a) = abc откуда следует:

    1. если b + a ≠ 0, то есть a ≠ —b, то уравнение имеет единственное решение
    2. если a = —b и c ≠ 0, то уравнение не имеет решений.
    3. если a = —b и c = 0, то любое действительное число есть решение данного уравнения.

    g) ОДЗ уравнения определяется из системы

    5xa ≠ 0,
    ax — 1 ≠ 0,

    откуда x ≠ a /5 и, если a ≠ 0, x ≠ 1 /a. Если a = 0, то уравнение примет вид или -2 = 15x,

    откуда , и, поскольку следует, что если a = 0 то уравнение имеет решение .

    Пусть a ≠ 0. Тогда в ОДЗ уравнение примет вид 2(ax — 1) = 3(5xa), откуда (2a — 15)x = 2 — 3a и, следовательно,

    1. если 2a — 15 ≠ 0, то есть то получим ;
    2. если 2a-15 = 0, то есть то уравнение не имеет решений.

    Таким образом для нужно проверить условие x ≠ a /5 и x ≠ 1 /a: или (2a — 15)a ≠ 5(2 — 3a) откуда 2a 2 ≠ 10, или Таким образом, для уравнение не имеет решений.

    В случае второго ограничения получим или a(2 — 3a) ≠ (2a — 15), откуда 3a 2 = 15, то есть a 2 ≠ 5 (уже исследованный случай).

    Таким образом, если уравнение не имеет решений, а если то уравнение имеет единственное решение (заметим, что решение полученное в случае a = 0 содержится в приведенном выше результате).

    Пример 3. Решить уравнения

    a) |xa| = 2;c) |xa| + |x — 2a| = a;
    b) |x| + |xa| = 0;d) |x — 1| + |x — 2| = a.

    Решение. a) Используя свойство модуля, получим:

    |xa| = 2 Ы
    xa = 2,
    xa = -2,
    Ы
    x = a + 2,
    x = a — 2.

    Таким образом, для любого действительного a уравнение имеет два различных решения, x1 = a + 2 и x2 = a — 2.

    b) Левая часть уравнения принимает неотрицательные значения (как сумма двух неотрицательных слагаемых), а правая часть равна нулю. Следовательно,

    x = 0,
    xa = 0,
    или
    x = 0,
    x = a.

    Таким образом, если a = 0, то система (а, следовательно, и уравнение) имеет единственное решение x = 0, а если a ≠ 0, то система (и исходное уравнение) решений не имеет.

    c) Так как | f(x)| = |-f(x)| уравнение можно переписать следующим образом |xa| + |2ax| = a.

    Очевидно, что если a 0. Тогда a = |a| = |(2ax) + (xa)|, и уравнение примет вид |xa| + |2ax| = |(2ax) + (xa)|. Это уравнение равносильно (см. свойства модуля) неравенству (2ax)(xa) ≥ 0 откуда, учитывая, что 0 О [a;2a].

    если a 0, то уравнение имеет бесконечное число решений — любое число ax ≤ 2a.

    d) Очевидно, что уравнение имеет решения только при a > 0. Рассмотрим три случая:

    1. Пусть xx + 1 — x + 2 = a или -2x = a — 3 откуда . Поскольку xоткуда a > 1. Таким образом, если a > 1, то ;
    2. Пусть x О [1;2]. Тогда |x — 1| = x — 1, |x — 2| = -(x-2) и уравнение примет вид x — 1 — x + 2 = a, 0·x = a — 1. Используя утверждение 1, получим:

    если a = 1, то любое действительное число из отрезка [1;2] есть решение исходного уравнения;

    если a ≠ 1, то решений нет.
    Пусть x > 2. Тогда |x — 1| = x — 1, |x — 2| = x — 2 и уравнение примет вид x — 1 + x — 2 = a откуда Поскольку x > 2, то то есть a > 1.

    если a > 1, то уравнение имеет два различных решения и

    если a = 1, то любое число отрезка [1;2] есть решение уравнения;

    если a Линейные неравенства

    ax + b > 0, ax + b ≥ 0, ax + b О R, x — переменная, называются неравенствами первой степени (линейными неравенствами).

    Поскольку все неравенства (2) решаются аналогично, приведем решение лишь первого из них: ax + b > 0. Рассмотрим следующие случаи:

    1. a > 0, тогда ax + b > 0 Ы ax > —b Ы x > — b /a и, следовательно, множество решений неравенства ax + b > 0 (a > 0) есть (- b /a;+ Ґ );
    2. aax + b > 0 Ы ax > —b Ы x b /a и, следовательно, множество решений неравенства ax + b > 0 (a Ґ ;- b /a);
    3. a = 0, тогда неравенство примет вид 0·x + b > 0 и для b > 0 любое действительное число есть решение неравенства, а при b ≤ 0 неравенство не имеет решений.

    Рассмотрим несколько примеров.

    Пример 1. Решить неравенства

    a) 3x + 6 > 0;c) 2(x + 1) + x

    Решение. a) 3x + 6 > 0 Ы 3x > -6 Ы x > -2, и, следовательно, множество решений исходного неравенства есть (-2;+ Ґ ).

    b) -2x + 3 ≥ 0 Ы -2x ≥ -3 Ы x ≤ 3 /2, то есть множеством решений исходного неравенства является (- Ґ ; 3 /2].

    c) После элементарных преобразований получим линейное неравенство 2(x + 1) + x Ы 2x + 2 + x Ы 0·x + 1 Так как 1 3x + 2 ≥ 3(x — 1) + 1 Ы 3x + 2 ≥ 3x — 3 + 1 Ы 0·x + 4 ≥ 0, откуда следует, что любое действительное число является решением исходного неравенства.

    Пример 2. Решить неравенства

    a) ax ≤ 1;
    b) |x — 2| > -(a — 1) 2 ;
    c) 3(4ax) ax + 3;
    e)
    f) ax + b > cx + d;
    g)

    Решение. a) В зависимости от знака a рассмотрим три случая:

    1. если a > 0, то x ≤ 1 /a;
    2. если a 1 /a;
    3. если a = 0, то неравенство примет вид 0·x ≤ 1 и, следовательно, любое действительное число является решением исходного неравенства.

    Таким образом, если a > 0, то x О (- Ґ ; 1 /a], если a О [ 1 /a;+ Ґ ), и если a = 0, то x О R.

    b) Заметим, что |x — 2| ≥ 0 для любого действительного x и -(a-1) 2 ≤ 0 для любого значения параметра a. Следовательно, если a = 1, то любое x действительное число, отличное от 2, является решением неравенства, а если a ≠ 1, то любое действительное число является решением неравенства. Ответ: если a = 1, то x О R\<2>, а если a О R\<1>, то x О R.

    c) После элементарных преобразований получим 3(4ax) Ы 12a — 3x Ы 12a — 3 Ы x(2a + 3) > 3(4a — 1).

    Далее рассмотрим три случая:

    1. если 2a + 3 > 0, то есть a > — 3 /2, то
    2. если 2a + 3 3 /2, то
    3. если 2a + 3 = 0, то есть a = — 3 /2, то неравенство примет вид 0·x > -21 и, так как 0 > -21 — истинное числовое неравенство, следует, что любое действительное число является решением исходного неравенства.

    если то

    если то

    Далее рассмотрим следующие случаи:

    1. если a(b — 1) > 0, то есть a > 0 и b > 1, или a
    2. если a(b — 1) 0 и b 1, то
    3. если a = 0, b ≠ 1 то неравенство примет вид 0·x > 3 — b и для b > 3 любое число является решением, а если b О (- Ґ ;1) И (1;3], то множество решений неравенства пусто.
    4. если a ≠ 0, b = 1, то неравенство примет вид 0·x > 2 и, очевидно, что оно решений не имеет.

    если a > 0 и b > 1, или a 0 и b 1, то

    если a = 0 и b О (3;+ Ґ ), то x О R;

    если a = 0 и b О (- Ґ ;1) И (1;3) или a ≠ 0 и b = 1, то неравенство не имеет решений.

    e) Заметим, что a ≠ ± 1, (в противном случае неравенство не имеет смысла). Неравенство переписывается следующим образом

    Далее рассмотрим следующие случаи:

    1. пусть a О (- Ґ ;-1) И (1;+ Ґ ), тогда (a — 1)(a + 1) > 0 и, следовательно, исходное неравенство равносильно следующему x(2 — 3a) + 3 — a ≤ 0, или x(2 — 3a) ≤ a — 3, откуда для a > 1

    Последнее неравенство решается следующим образом:

    если a О (-1; 2 /3), то

    если a О ( 2 /3,1), то .

    Таким образом, исходное неравенство

    при a О (- Ґ ;-1) И ( 2 /3;1) имеет решения

    при a О (-1; 2 /3) И (1;+ Ґ ) имеет решения

    при a = 2 /3, любое действительное число является решением исходного неравенства.

    f) Исходное неравенство равносильно следующему (ac)x > db откуда следует, что

    1. если a >c, то ac > 0 и, следовательно,
    2. если a О R.

    g) Заметим, что a ≠ 0 и b ≠ 0. Приведя к общему знаменателю, получим

    2(b 2 — a 2 ) — x(ba) 2 > 0,
    ab > 0,
    2(b 2 — a 2 ) — x(ba) 2
    Ы
    x(ba) 2 2 — a 2 ),
    ab 2 > 2(b 2 — a 2 ),
    ab Ы
    ab > 0,
    ab,
    x О Ж ,
    a = b,
    ab

    Таким образом, если a и b одиннакогого знака (ab > 0) и ab, то множество решений неравенства есть если a и b — противоположных знаков (ab

    a) |x + a| + |x — 2a| 2;
    b) |x + a|

    Решение. a) Заметим, что при a ≤ 0 неравенство решений не имеет. Пусть a > 0. Рассмотрим три случая:

    1. пусть x О (- Ґ ;-a], тогда |x + a| = —xa и |x — 2a| = 2ax и неравенство примет вид —xa + 2ax — 3 /2a, поскольку a > 0, пересечением множеств (- Ґ ;-a] и (а, следовательно, и множеством решений неравенства) явяется множество
    2. пусть x О (-a;2a], тогда |x + a| = x + a, и |x — 2a| = 2ax, и неравенство примет вид x + a + 2ax и, поскольку a > 0, любое число из интервала (-a;2a] есть решение неравенства;
    3. пусть x О (2a;+ Ґ ), тогда |x + a| = x + a и |x — 2a| = x — 2a, и неравенство примет вид x + a + x — 2a 5 /2a. Учитывая условие x > 2a, получим x О (2a; 5 /2a).

    Таким образом, если a ≤ 0, то неравенство не имеет решений, а если a > 0, то множество решений неравенства есть (- 3 /2a;-a] И (-a;2a] И (2a; 5 /2a) или (- 3 /2a; 5 /2a).

    b) Заметим, что неравенство может иметь лишь положительные решения. Для x > 0 неравенство переписывается |x + a| |x + a| Ы |x + a| Ы (x + a + ax)(x + aax) Ы

    Ы [(a + 1)x + a][(1 — a)x + a] Ы
    (a + 1)x + a > 0,
    (1 — a)x + a Ы
    (a + 1)x > —a,
    (1 — a)xa.

    Если a > 1, тогда a — 1 > 0 и a + 1 > 0, и первая система совокупности примет вид

    откуда (учитывая, что x > 0) получим а вторая система совокупности примет вид и, так как a > 1 влечет а x > 0, система не имеет решений.

    Если a = 1, то первая система совокупности не имеет решений, а из второй получим x 1 /2, и, так как x > 0, то и в этом случае исходное неравенство не имеет решений.

    Если -1 0 и 1 — a > 0, и первая система совокупности примет вид или откуда, заметив, что получим, что первая система совокупности несовместна. Из второй системы получим и, учитывая, что x > 0, получим откуда a О [0;1), то неравенство не имеет решений, а если a О (-1;0), то множество решений неравенства есть

    Если a = -1, то первая система совокупности несовместна, а из второй получим x > 1 /2.

    Если a 0, и из первой системы следует Так как a 0, то в этом случае исходное неравенство не имеет решений. Вторая система совокупности примет вид и, поскольку x > 0, получим

    если a О (- Ґ ;-1) И (1;+ Ґ ), то

    если a О [0;1], то неравенство не имеет решений;

    Линейные уравнения. Решение линейных уравнений.

    Решение линейных уравнений базируется на тождественных преобразованиях уравнений. Если сказать по-другому, решение всех уравнений начинается с этих преобразований. При решении линейных уравнений, оно (решение) на тождественных преобразованиях и заканчивается окончательным ответом.

    Случай ненулевого коэффициента при неизвестной переменной.

    Переносим в одну сторону члены с иксом, а в другую сторону — числа. Обязательно помните, что перенося слагаемые на противоположную сторону уравнения, нужно поменять знак:

    Приводим подобные слагаемые:

    Далее делим обе части уравнения на коэффициент при иксе (у нас это a), теперь x остался без коэффициента:

    Сокращаем а при х и получаем:

    Это ответ. Если нужно проверить, является ли число -b:(a) корнем нашего уравнения, то нужно подставить в начальное уравнение вместо х это самое число:

    Т.к. это равенство верное, то -b:(a) и правда есть корень уравнения.

    Переносим в одну сторону члены с х, а в другую сторону числа:

    Приводим подобные слагаемые:

    Далее делим обе части уравнения на коэффициент при иксе (у нас: −2), теперь x остается без коэффициента:

    При неизвестной коэффициент сократили и получили ответ:

    Это ответ. Если нужно проверить, действительно ли число 4 корнем нашего уравнения, подставляем в исходное уравнение вместо икса это число:

    Т.к. это равенство верное, то 4 — это корень уравнения.

    Сначала избавляемся от дроби (правило сокращения дробей), домножив каждое слагаемое на 7 (если знаменатели разные, то пользуемся правилом приведения дробей к общему знаменателю):

    Перенеся неизвестные и числа в разные стороны, получили:

    Делим части уравнения на коэффициент при x (на 4) и получаем:

    Ответ: .

    Сначала избавляемся от иррациональности в коэффициенте при неизвестном, домножив все слагаемые на :

    Эту форму считают упрощаемой, т.к. в числе есть корень числа в знаменателе. Нужно упростить ответ, умножив числитель и знаменатель на одинаковое число, у нас это :

    Ответ: .

    Случай отсутствия решений.

    Перенеся иксы и числа в разные стороны и приведя подобные слагаемые, получаем уравнение:

    При всех x наше уравнение не станет верным равенством. То есть, у нашего уравнения нет корней.

    Ответ: решений нет.

    Частный случай — бесконечное число решений.

    Перенеся иксы и числа в разные стороны и приведя подобные слагаемые, получаем уравнение:

    Здесь тоже не возможно разделить обе части на 0, т.к. это запрещено. Однако, подставив на место х всякое число, мы получаем верное равенство. То есть, всякое число есть решение такого уравнения. Т.о., здесь бесконечное число решений.

    Ответ: бесконечное число решений.

    Случай равенства двух полных форм.

    Ответ: x=(d-b):(a-c), если d≠b и a≠c, иначе бесконечно много решений, но, если a=c, а d≠b, то решений нет.

    Различные методы решения уравнений

    Разделы: Математика

    I. Линейные уравнения

    II. Квадратные уравнения

    ax 2 + bx + c = 0, a ≠ 0, иначе уравнение становится линейным

    Корни квадратного уравнения можно вычислять различными способами, например:

    Мы хорошо умеем решать квадратные уравнения. Многие уравнения более высоких степеней можно привести к квадратным.

    III . Уравнения, приводимые к квадратным.

    замена переменной: а) биквадратное уравнение ax 2n + bx n + c = 0, a ≠ 0, n ≥ 2

    2) симметрическое уравнение 3 степени – уравнение вида

    3) симметрическое уравнение 4 степени – уравнение вида

    ax 4 + bx 3 + cx 2 + bx + a = 0, a ≠ 0, коэффициенты a b c b a или

    ax 4 + bx 3 + cx 2 – bx + a = 0, a ≠ 0, коэффициенты a b c (–b) a

    Т.к. x = 0 не является корнем уравнения, то возможно деление обеих частей уравнения на x 2 , тогда получаем: .

    Произведя замену решаем квадратное уравнение a(t 2 – 2) + bt + c = 0

    Например, решим уравнение x 4 – 2x 3 – x 2 – 2x + 1 = 0, делим обе части на x 2 ,

    , после замены получаем уравнение t 2 – 2t – 3 = 0

    – уравнение не имеет корней.

    Ответ:

    4) Уравнение вида (x – a)(x – b)(x – c)(x – d) = Ax 2 , коэффициенты ab = cd

    Например, (x + 2)(x +3)(x + 8)(x + 12) = 4x 2 . Перемножив 1–4 и 2–3 скобки, получим (x 2 + 14x + 24)(x 2 +11x + 24) = 4x 2 , разделим обе части уравнения на x 2 , получим:

    имеем (t + 14)(t + 11 ) = 4.

    5) Однородное уравнение 2 степени – уравнение вида Р(х,у) = 0, где Р(х,у) – многочлен, каждое слагаемое которого имеет степень 2.

    IV. Все приведенные уравнения узнаваемы и типичны, а как быть с уравнениями произвольного вида?

    Рассмотрим метод понижения степени уравнения.

    Известно, что, если коэффициенты a являются целыми числами и an = 1 , то целые корни уравнения Pn(x) = 0 находятся среди делителей свободного члена a0. Например, x 4 + 2x 3 – 2x 2 – 6x + 5 = 0, делителями числа 5 являются числа 5; –5; 1; –1. Тогда P4(1) = 0, т.е. x = 1 является корнем уравнения. Понизим степень уравнения P4(x) = 0 с помощью деления “уголком” многочлена на множитель х –1, получаем

    Аналогично, P3(1) = 0, тогда P4(x) = (x – 1)(x – 1)(x 2 + 4x +5), т.е. уравнение P4(x) = 0 имеет корни x1 = x2 = 1. Покажем более короткое решение этого уравнения (с помощью схемы Горнера).

    12–2–65
    1131–50
    11450

    Итак, (x – 1) 2 (x 2 + 4x + 5) = 0

    Что мы делали? Понижали степень уравнения.

    V. Рассмотрим симметрические уравнения 3 и 5 степени.

    а) ax 3 + bx 2 + bx + a = 0, очевидно, x = –1 корень уравнения, далее понижаем степень уравнения до двух.

    б) ax 5 + bx 4 + cx 3 + cx 2 + bx + a = 0, очевидно, x = –1 корень уравнения, далее понижаем степень уравнения до двух.

    Например, покажем решение уравнения 2x 5 + 3x 4 – 5x 3 – 5x 2 + 3x + = 0

    23–5–532
    –121–6120
    123–3–20
    12520

    Получаем (x – 1) 2 (x + 1)(2x 2 + 5x + 2) = 0. Значит, корни уравнения: 1; 1; –1; –2; –0,5.

    VI. Приведем список различных уравнений для решения в классе и дома.

    Предлагаю читателю самому решить уравнения 1–7 и получить ответы…


    источники:

    http://www.calc.ru/Lineynyye-Uravneniya-Resheniye-Lineynykh-Uravneniy.html

    http://urok.1sept.ru/articles/576727