Линейные диофантовы уравнения алгоритм евклида

Учебный проект » Алгоритм Евклида и линейные диофантовы уравнения.

Учебный проект выполнила ученица 8б класса Малютина Дарья.

В школьном курсе математики диофантовы уравнения не изучаются, но, например, в заданиях ЕГЭ встречаются диофантовы уравнения 2-ой степени, также уравнения часто встречаются и в олимпиадных задачах.

Значит, ученику для успешной сдачи ЕГЭ и решения олимпиадных задач нужно знать и теорию и методику решения диофантовых уравнений.

Просмотр содержимого документа
«Учебный проект » Алгоритм Евклида и линейные диофантовы уравнения.»

АЛГОРИТМ ЕВКЛИДА И ЛИНЕЙНЫЕ ДИОФАНТОВЫ УРАВНЕНИЯ

Выполнила: ученица 8 б класса

Учитель: Затеева Валентина Павловна

В школьном курсе математики диофантовы уравнения не изучаются, но, например, в заданиях ЕГЭ встречаются диофантовы уравнения 2-ой степени, также уравнения часто встречаются и в олимпиадных задачах.

Значит, ученику для успешной сдачи ЕГЭ и решения олимпиадных задач нужно знать и теорию и методику решения диофантовых уравнений.

ЦЕЛЬ И ЗАДАЧИ ПРОЕКТА

Цель: Научиться решать текстовые задачи, по которым можно составить деофантово уравнение.

  • Найти информацию о том, как был открыт алгоритм Евклида.
  • Узнать, где применяют диофантовы уравнения в наше время.
  • Изучить основные приёмы и методы решения линейных диофантовых уравнений в целых числах.

Евкли́д (от греч. «добрая слава» ) — древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения об Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в III в. до н. э.

Алгори́тм Евкли́да — эффективный алгоритм для нахождения наибольшего общего делителя двух целых чисел (или общей меры двух отрезков). Алгоритм назван в честь греческого математика Евклида (III век до н. э.), который впервые описал его . Это один из старейших численных алгоритмов, используемых в наше время.

В самом простом случае алгоритм Евклида применяется к паре положительных целых чисел и формирует новую пару, которая состоит из меньшего числа и разницы между большим и меньшим числом. Процесс повторяется, пока числа не станут равными. Найденное число и есть наибольший общий делитель исходной пары. Евклид предложил алгоритм только для натуральных чисел и геометрических величин (длин, площадей, объёмов). Однако в XIX веке он был обобщён на другие типы математических объектов. Это привело к появлению в современной общей алгебре такого понятия, как евклидово кольцо.

ОПИСАНИЕ АЛГОРИТМА НАХОЖДЕНИЯ НОД ДЕЛЕНИЕМ

1. Большее число делим на меньшее

2. Если делится без остатка, то меньшее число и есть НОД (следует выйти из цикла). Если есть остаток, то большее число заменяем на остаток от деления.

3. Переходим к пункту 1.

Найти НОД для 40 и 15.

40/15 = 2 (остаток 10)

15/10 = 1 (остаток 5)

10/5 = 2 (остаток 0).

Конец: НОД — это делитель. НОД (40, 15) = 5

ОПИСАНИЕ АЛГОРИТМА НАХОЖДЕНИЯ НОД ВЫЧИТАНИЕМ

1. Из большего числа вычитаем меньшее

2. Если получается 0, то значит, что числа равны друг другу и являются НОД (следует выйти из цикла)

3. Если результат вычитания не равен 0, то большее число заменяем на результат вычитания

4. Переходим к пункту 1

Найти НОД для 40 и 15.

5 — 5 = 0 Конец: НОД — это уменьшаемое или вычитаемое. НОД (40, 15) = 5

Диофант (Александрийский) – древнегреческий математик, живший в 3 веке до нашей эры. В своем основном труде «Арифметика», состоящем из 13 книг, он дал решение большого числа задач и, в частности, уравнений, которые теперь называют его именем.

Диофа́нтово уравнение — это уравнение вида P(x1, x2, . xn) = 0, где P(x1, . xn) — многочлен с целыми коэффициентами. Диофантовым уравнение названо в честь древнегреческого математика Диофанта. К решению подобных уравнений сводятся разнообразные текстовые задачи, в которых неизвестные величины выражают количество предметов того или иного рода и потому являются натуральными (или неотрицательными целыми) числами.

Общий вид линейного диофантова уравнения с двумя неизвестными: ax+by = c (числа a и b взаимно просты ).

Допустим, в аквариуме живут осьминоги и морские звёзды. У осьминогов по 8 ног, а у морских звёзд – по 5. Всего конечностей насчитывается 39. Сколько в аквариуме животных?

Решение. Пусть х — количество морских звёзд, у – количество осьминогов. Тогда у всех осьминогов по 8у ног, а у всех звёзд 5х ног. Составим уравнение: 5х + 8у = 39.

Заметим, что количество животных не может выражаться нецелым или отрицательным числами. Следовательно, если х – целое неотрицательное число, то и у=(39 – 5х)/8 должно быть целым и неотрицательным, а, значит, нужно, чтобы выражение 39 – 5х без остатка делилось на 8. Простой перебор вариантов показывает, что это возможно только при х = 3, тогда у = 3. Ответ: (3; 3)

В каталоге картинной галереи всего 96 картин. На каких-то страницах расположено 4 картины, а на каких-то 6. Сколько страниц каждого вида есть в каталоге?

Решение. Пусть х – количество страниц с четырьмя картинами, у – количество страниц с шестью картинами, тогда по условию этой задачи можно составить уравнение:4x+6y=96.

Решаем это уравнение относительно 4х, то есть:

Делим все уравнение на этот коэффициент:

Остатки при делении на 4: 1,2,3. Подставим вместо у эти числа.

Если у=1, то х=(96-6∙1):4=90:4 — Не походит, решение не в целых числах.

Если у=2, то х=(96-6∙2):4=21 – Подходит.

Если у=3, то х=(96-6∙3):4=78:4 — Не походит, решение не в целых числах.

Итак, частным решением является пара (21;2), а это значит, что на 21 странице расположено по 4 картины, а на 2 страницах по 6 картин.

3=7-4∙1. Выразим 4=3∙1+1, = 1=4-3∙1=4-(7-4∙1)=4-7+4∙1=4∙2-7∙1=1. Итак, получается х=1; у=2. А это значит, что молочный шоколад лежит в коробке по 1 штуке, а горький по 2 штуки. » width=»640″

В магазине продаётся шоколад двух видов: молочный и горький. Весь шоколад хранится в коробках. Молочного шоколада на складе имеется 7 коробок, а горького 4. Известно, что горького шоколада было на одну плитку больше. Сколько плиток шоколада находятся в коробках каждого вида?

Решение. Пусть х – количество плиток молочного шоколада в одной коробке, у – количество плиток горького шоколада в одной коробке, тогда по условию этой задачи можно составить уравнение:4у-7х=1.

Решим это уравнение, используя алгоритм Евклида.

Выразим 7=4∙1+3, = 3=7-4∙1.

Выразим 4=3∙1+1, = 1=4-3∙1=4-(7-4∙1)=4-7+4∙1=4∙2-7∙1=1.

Итак, получается х=1; у=2.

А это значит, что молочный шоколад лежит в коробке по 1 штуке, а горький по 2 штуки.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ТЕОРИИ ДИОФАНТОВЫХ УРАВНЕНИЙ.

Неожиданно, лет 20-30 назад, было осознано, что эту чисто абстрактную теорию можно использовать для построения алгоритмов, которые нужны для криптографии, чтобы зашифровывать и безопасно передавать секретные сообщения, а также снимать и класть деньги в банкоматах и т. п. Теория эта оказалась востребована на практике.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ТЕОРИИ ДИОФАНТОВЫХ УРАВНЕНИЙ.

Знаменитый мост «Золотые Ворота», находящийся в Сан-Франциско был построен с применением теории диофантовых уравнений.

Я узнала, что такое алгоритм Евклида и диофантовы уравнения. Научилась находить наибольший общий делить чисел несколькими способами и рассмотрела задачи, которые можно решить, составив диофантово уравнение.

Выявила, где в наше время можно встретить диофантовы уравнения.

Диофантовы уравнения

Что такое «решение задач подбором», и можно ли их решать иначе?

По отзывам сибмам, настоящим камнем преткновения в школьном курсе математики не только для учеников, но и для родителей становятся диофантовы уравнения. Что это такое и как их правильно решать? Разобраться нам помогли учитель математики образовательного центра «Горностай» Аэлита Бекешева и кандидат физико-математических наук Юрий Шанько.

Кто такой Диофант?

Еще древние египтяне для удобства рассуждений придумали специальное слово, обозначавшее неизвестное число, но в то время не было еще знаков действий и знака равенства, поэтому и записывать уравнения они не умели.

Первым, кто придумал, как можно записать уравнение, был замечательный ученый Диофант Александрийский. Александрия была большим культурным, торговым и научным центром древнего мира. Этот город существует и сейчас, он находится на Средиземноморском побережье Египта.

Жил Диофант, по-видимому, в III веке н.э. и был последним великим математиком античности. До нас дошли два его сочинения — «Арифметика» (из тринадцати книг сохранилось шесть) и «О многоугольных числах» (в отрывках). Творчество Диофанта оказало большое влияние на развитие алгебры, математического анализа и теории чисел.

А ведь вы знаете кое-что о диофантовых уравнениях…

Диофантовы уравнения знают все! Это задачки для учеников младших классов, которые решаются подбором.

” Например, «сколькими различными способами можно расплатиться за мороженое ценой 96 копеек, если у вас есть только копейки и пятикопеечные монеты?»

Если дать диофантовому уравнению общее определение, то можно сказать, что это алгебраическое уравнение с дополнительным условием: все его решения должны быть целыми числами (а в общем случае и рациональными).

” Зачастую мамы (особенно те, кто окончил школу еще при развитом социализме) полагают, что основная цель таких задач – научить детей расплачиваться мелочью за мороженое. И вот, когда они искренне убеждены, что раскладывание мелочи кучками осталось далеко в прошлом, их любимый семиклассник (или восьмиклассник) подходит с неожиданным вопросом: «Мама, как это решать?», и предъявляет уравнение с двумя переменными. Раньше таких задачек в школьном курсе не было (все мы помним, что уравнений должно быть столько же, сколько и переменных), так что мама не-математик нередко впадает в ступор. А ведь это та же самая задача про мелочь и мороженое, только записанная в общем виде!

Кстати, а зачем к ней вдруг возвращаются в седьмом классе? Все просто: цель изучения диофантовых уравнения – дать основы теории целых чисел, которая дальше развивается как в математике, так и в информатике и программировании. Диофантовы уравнения часто встречаются среди задач части «С» единого госэкзамена. Трудность, прежде всего в том, что существует множество методов решения, из которых выпускник должен выбрать один верный. Тем не менее, линейные диофантовы уравнения ax + by = c могут быть решены относительно легко с помощью специальных алгоритмов.

Алгоритмы для решения диофантовых уравнений

— Изучение диофантовых уравнения начинается в углубленном курсе алгебры с 7 класса. В учебнике Ю.Н. Макарычева, Н.Г. Миндюка приводятся некоторые задачи и уравнения, которые решают с использованием алгоритма Евклида и метода перебора по остаткам, — рассказывает Аэлита Бекешева. — Позже, в 8 – 9 классе, когда уже рассматриваем уравнения в целых числах более высоких порядков, показываем ученикам метод разложения на множители, и дальнейший анализ решения этого уравнения, оценочный метод. Знакомим с методом выделения полного квадрата. При изучении свойств простых чисел знакомим с малой теоремой Ферма, одной из основополагающих теорем в теории решений уравнений в целых числах. На более высоком уровне это знакомство продолжается в 10 – 11 классах. В это же время мы подводим ребят к изучению и применению теории «сравнений по модулю», отрабатываем алгоритмы, с которыми знакомились в 7 – 9 классах. Очень хорошо это материал прописан в учебнике А.Г. Мордковича «Алгебра и начала анализа, 10 класс» и Г.В. Дорофеева «Математика» за 10 класс.

Алгоритм Евклида

Сам метод Евклида относится к другой математической задаче – нахождению наибольшего общего делителя: вместо исходной пары чисел записывают новую пару – меньшее число и разность между меньшим и большим числом исходной пары. Это действие продолжают до тех пор, пока числа в паре не уравняются – это и будет наибольший общий делитель . Разновидность алгоритма используется и при решении диофантовых уравнений — сейчас мы вместе с Юрием Шанько покажем на примере, как решать задачи «про монетки».

— Рассматриваем линейное диофантово уравнение ax + by = c, где a, b, c, x и y — целые числа. Как видите, одно уравнение содержит две переменных. Но, как вы помните, нам нужны только целые корни, что упрощает дело — пары чисел, при которых уравнение верно, можно найти.

Впрочем, диофантовы уравнения не всегда имеют решения. Пример: 4x + 14y = 5. Решений нет, т.к. в левой части уравнения при любых целых x и y будет получаться четное число, а 5 — число нечетное. Этот пример можно обобщить. Если в уравнении ax + by = c коэффициенты a и b делятся на какое-то целое d, а число c на это d не делится, то уравнение не имеет решений. С другой стороны, если все коэффициенты (a, b и c) делятся на d, то на это d можно поделить все уравнение.

Например, в уравнении 4x + 14y = 8 все коэффициенты делятся на 2. Делим уравнение на это число и получаем: 2𝑥 + 7𝑦 = 4. Этот прием (деления уравнения на какое-то число) позволяет иногда упростить вычисления.

Зайдем теперь с другой стороны. Предположим, что один из коэффициентов в левой части уравнения (a или b) равен 1. Тогда наше уравнение уже фактически решено. Действительно, пусть, например, a = 1, тогда мы можем в качестве y взять любое целое число, при этом x = c − by. Если научиться сводить исходное уравнение к уравнению, в котором один из коэффициентов равен 1, то мы научимся решать любое линейное диофантово уравнение!

Я покажу это на примере уравнения 2x + 7y = 4.

Его можно переписать в следующем виде: 2(x + 3y) + y = 4.

Введем новую неизвестную z = x + 3y, тогда уравнение запишется так: 2z + y = 4.

Мы получили уравнение с коэффициентом один! Тогда z — любое число, y = 4 − 2z.

Осталось найти x: x = z − 3y = z − 3(4 − 2z) = 7z − 12.

” В этом примере важно понять, как мы перешли от уравнения с коэффициентами 2 и 7 к уравнению с коэффициентами 2 и 1. В данном случае (и всегда!) новый коэффициент (в данном случае — единица) это остаток от деления исходных коэффициентов друг на друга (7 на 2).

В этом примере нам повезло, мы сразу после первой замены получили уравнение с коэффициентом 1. Такое бывает не всегда, но и мы можем повторять предыдущий трюк, вводя новые неизвестные и выписывая новые уравнения. Рано или поздно после таких замен получится уравнение с коэффициентом 1.

Давайте попрообуем решить более сложное уравнение, предлагает Аэлита Бекешева.

Рассмотрим уравнение 13x — 36y = 2.

Шаг №1

36/13=2 (10 в остатке). Таким образом, исходное уравнение можно переписать следующим образом: 13x-13 * 2y-10y=2. Преобразуем его: 13(x-2y)-10y=2. Введем новую переменную z=x-2y. Теперь мы получили уравнение: 13z-10y=2.

Шаг №2

13/10=1 (3 в остатке). Исходное уравнение 13z-10y=2 можно переписать следующим образом: 10z-10y+3z=2. Преобразуем его: 10(z-y)+3z=2. Введем новую переменную m=z-y. Теперь мы получили уравнение: 10m+3z=2.

Шаг №3

10/3=3 (1 в остатке). Исходное уравнение 10m+3z=2 можно переписать следующим образом: 3 * 3m+3z+1m=2. Преобразуем его: 3(3m+z)+1m=2. Введем новую переменную n=3m+z. Теперь мы получили уравнение: 3n+1m=2.

Ура! Мы получили уравнение с коэффициентом единица!

m=2-3n, причем n может быть любым числом. Однако нам нужно найти x и y. Проведем замену переменных в обратном порядке. Помните, мы должны выразить x и y через n, которое может быть любым числом.

y=z-m; z=n-3m, m=2-3n ⇒ z=n-3 * (2-3n), y=n-3*(2-3n)-(2-3n)=13n-8; y=13n-8

x=2y+z ⇒ x=2(13n-8)+(n-3*(2-3n))=36n-22; x=36n-22

Пусть n=5. Тогда y=57, x=158. 13*(158)-36 * (57)=2

Да, разобраться не очень просто, зато теперь вы всегда сможете решить в общем виде задачи, которые решаются подбором!

Решаем задачи на подбор чисел

Примеры задач для учеников младших классов, которые решаются подбором: посоревнуйтесь с ребенком, кто решит их быстрее: вы, используя алгорит Евклида, или школьник — подбором?

Задача про лапы

Условия

В клетке сидят куры и кролики. Всего у них 20 лап. Сколько там может быть кур, а сколько — кроликов?

Решение

Пусть у нас будет x кур и y кроликов. Составим уравнение: 2х+4y=20. Сократим обе части уравнения на два: x+2y=10. Следовательно, x=10-2y, где x и y — это целые положительные числа.

Ответ

Число кроликов и куриц: (1; 8), (2; 6), (3; 4), (4; 2), (5; 0)

Согласитесь, получилось быстрее, чем перебирать «пусть в клетке сидит один кролик. »

Задача про монетки

Условия

У одной продавщицы были только пяти- и двухрублевые монетки. Сколькими способами она может набрать 57 рублей сдачи?

Решение

Пусть у нас будет x двухрублевых и y пятирублевых монеток. Составим уравнение: 2х+5y=57. Преобразуем уравнение: 2(x+2y)+y=57. Пусть z=x+2y. Тогда 2z+y=57. Следовательно, y=57-2z, x=z-2y=z-2(57-2z) ⇒ x=5z-114. Обратите внимание, переменная z не может быть меньше 23 (иначе x, число двухрублевых монеток, будет отрицательным) и больше 28 (иначе y, число пятирублевых монеток, будет отрицательным). Все значения от 23 до 28 нам подходят.

Алгебра. 7 класс

Конспект урока

Линейные диофантовы уравнения

Перечень рассматриваемых вопросов:

  • Диофантово уравнение.
  • Разрешимость диофантова уравнения.
  • Решение задач с помощью диофантова уравнения.

Диофантовым уравнением называется уравнение вида ах + bу = с (а ≠ 0, b ≠ 0), где а, b, с, х и у – целые числа.

Если c делится на НОД(а; b), то уравнение ах + bу = с имеет решение в целых числах. Если c не делится на НОД (а; b), то уравнение ах + bу = с не имеет решений в целых числах.

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Определение диофантова уравнения.

Пусть дано уравнение ах + bу = с (а ≠ 0, b ≠ 0), где а, b, с – целые числа. Если поставлена задача найти только такие его решения (х0; у0), где х0, у0 – целые числа, то это уравнение называют линейным диофантовым уравнением.

Диофантовы уравнения связаны с именем древнегреческого математика Диофанта Александрийского. О подробностях жизни Диофанта Александрийского практически ничего не известно. С одной стороны, Диофант цитирует Гипсикла (II век до нашей эры); с другой стороны, о Диофанте пишет Теон Александрийский (около 350 года нашей эры). Откуда можно сделать вывод, что жил он приблизительно в III веке нашей эры.

Решение диофантовых уравнений.

Решим линейное диофантово уравнение

Выразим у через х:

Из этого равенства видно, что у будет целым только тогда, когда целое число х делится на 3, т.е. х = 3х1, где х1 – некоторое целое число. Тогда у = 2 -2х1.

Таким образом, решениями уравнения являются все пары чисел (3х1;2 -2х1).

Приведём некоторые частные решения этого уравнения.

Если х1 = 0, то х = 3х1 = 0, а у = 2 — 2 х1 = 2; решением уравнения является пара (0;2).

Если х1 = 1, то х = 3х1 = 3, а у = 2 — 2 х1 = 0;

решением уравнения является пара (3; 0)

Аналогично можно найти и другие частные решения, их бесконечно много.

Решение задач при помощи линейных диофантовых уравнений.

Линейные диофантовы уравнения возникают при решении некоторых задач.

У покупателя и продавца имеются монеты только по 2р. и 5р. Сможет ли покупатель заплатить за покупку стоимостью 1р.?

Если покупатель даст х монет по 2р. и у монет по 5 р., то он заплатит (2х + 5у) р. А по условию задачи это 1р. Составим уравнение:

Выразим х через у из уравнения:

Из равенства видно, что х будет целым только тогда, когда у будет нечетным числом: у = 2m + 1, где m – целое число.

Таким образом, решением уравнения являются все пары чисел (-5m – 2; 2m + 1), где m – любое целое число.

Таким образом, способов оплаты товара стоимостью 1р. Бесконечно много. Если х окажется отрицательным, то это означает, что покупатель должен получить сдачу: х монет по 2р.

Например, пара (-2; 1) является решением уравнения. Это означает, что покупатель далодну монету по 5 р. и получил сдачу 2 монеты по 2р.

Разрешимость диофантова уравнения.

Не каждое диофантово уравнение имеет решение в целых числах.

Рассмотрим на примере уравнения

3х + 6у = 2 алгоритм, с помощью которого можно определить, имеет оно решение в целых числах.

1 шаг. Надо найти наибольший общий делитель чисел 3 и 6. НОД(3; 6) = 3.

2 шаг. Определить, делится ли 2 на НОД(3; 6).

3 шаг. Если 2 делится на НОД(3; 6), то уравнение имеет решение в целых числах.

Если 2 не делится на НОД (3; 6), то уравнение не имеет решений в целых числах.

Расширенный алгоритм Евклида для решения диофантовых уравнений.

Для нахождения наибольшего общего делителя двух целых неотрицательных чисел используют алгоритм Евклида. Рассмотрим его реализацию на примере чисел 24 и 17.

Разделим большее из этих чисел на меньшее, то есть 24 на 17.

Получаем 24 : 17 = 1 (ост. 7), что можно записать в виде равенства:

Теперь разделим делитель на остаток, то есть 17 на 7, получим:

Снова разделим делитель на остаток:

Выполним деление еще раз:

Мы получили остаток, равный нулю, так как 3 делится на 1 без остатка.

В представленной последовательности действий мы получали остатки: 7, 3, 1, 0. Последний остаток, не считая 0, является наибольшим общим делителем чисел 24 и 17. То есть, НОД(24; 17) = 1.

Рассмотрим еще один пример: НОД(612; 342)?

612 = 342 ∙ 1 + 270,

342 = 270 ∙ 1 + 72,

Теперь выполним действия «в обратном направлении», то есть выразим 18 (остаток) через числа 612 и 342.

Для этого в каждой строчке последовательности Евклида выразим остатки через делимое и делитель (второй столбик таблицы):

612 = 342 ∙ 1 + 270

342 = 270 ∙ 1 + 72

270 = 612 – 342 ∙ 1

72 = 342 – 270 ∙ 1

Получаем, 18 = 72 – 54 ∙ 1 = 72 – (270 – 72 ∙ 3) = 342 – 270 ∙ 1 – (270 – (342 — 270 ∙ 1) ∙3) =

342 – ((612 – 342 ∙1) ∙ 1) – (612 – 342 ∙ 1 – (342 – (612 – 342 ∙ 1)) ∙3) = 342 – 612 + 342 – 612 + 342 + 342 ∙ 3 – 612 ∙ 3 + 342 ∙ 3 = 342 ∙ 9 – 612 ∙ 5 = 342 ∙ 9 + 612 ∙ (-5).

То есть 18 = 9 ∙ 342 + (-5) ∙ 612.

Умение выполнять действия алгоритма «в обратном направлении» понадобится нам в решении диофантовых уравнений при помощи расширенного алгоритма Евклида.

Пример: решите уравнение 24x−17y=2.

Найдем при помощи алгоритма Евклида НОД(24, 17):

Выполним действия «в обратном направлении»:

1 = 7 – 3 · 2 = 7 − (17 – 7 · 2) · 2 = 7 – 17 · 2 + 7 · 4 + 5 · 7 – 2 · 17 = 5 · (24 – 17 · 1) – 2 · 17 = 5 · 24 – 5 · 17 – 2 · 17 = 5 · 24 – 7 · 17 = 24 · 5 – 17 · 7.

24 · 5 – 17 · 7 = 1; В исходном уравнении в правой части стоит число 2. Поэтому умножим обе части уравнения на 2. Получим:

24 · 10 – 17 · 14 = 2.

То есть, x0 = 10, y0 = 14 – частные решения уравнения 24x −17y = 2.Если уравнение имеет одно решение в целых числах, то оно имеет бесконечное множество других решений.

Прибавим коэффициент b к значению х.

Чтобы значение исходного уравнения не изменилось, при прибавлении одного числа к х нужно вычесть другое число изу:

(-7; -10) – еще одно решение уравнения.

Значения x будут равны сумме исходного решения (х0) и любого кратного коэффициента b. То есть х = 10 + (-17t), где t – целое число.

А значение у – равны разности у0 и любого кратного коэффициента а. То есть у = 14 – 24t.

Ответ: (10 − 17t, 14 − 24t), t ∈ Z.

Разбор заданий тренировочного модуля.

1. Решите задачу:

Некий чиновник купил ослов и быков за 1770 талеров. За каждого осла он уплатил по 31 талеру, а за каждого быка – по 21 талеру. Сколько ослов и быков купил чиновник?

Пусть чиновник купил х ослов и у быков. Тогда 31х + 21у = 1770.

По смыслу задачи х и у – натуральные числа. Так как 21 и 1770 делятся на 3, то 31х делится на 3, т. е. х делится на 3: х = 3n, где n – натуральное число. Тогда 31n + 7у = 590. Откуда n =

Очевидно, что n будет целым, если 7у – 1 делится на 31.

Наименьшее натуральное у, при котором это произойдет, равно 9. При этом n = 17, х = 51. Первое решение найдено: (51; 9).

Заметим, что следующие целые n будут получаться в результате увеличения у = 9 на число, кратное 31.

При у = 9 + 21 = 40 имеем n = 10, х = 30.

При у = 40 + 9 имеем n = 3, х = 9.

При следующих значениях у значения n отрицательны. Таким образом, исходное уравнение имеет 3 решения: (51, 9), (30, 40), (9, 71).

Ответ: (51, 9), (30, 40), (9, 71).

2. Решение уравнения.

Разделите уравнения на 2 группы: уравнение имеет решение в целых числах, уравнение не имеет решений в целых числах.

1) НОД(7; 5) = 1, 2 делится на 1, следовательно, 7х – 5у = 2 имеет решение в целых числах.

2) НОД(3; 5) = 1, 10 делится на 1, следовательно, 3х + 5у = 10 имеет решение в целых числах.

3) НОД(2; 4) = 2, -1 не делится на 2, следовательно, 2х + 4у = -1 не имеет решений в целых числах.

4) НОД(3; 9) = 3, 10 не делится на 3, следовательно, 3х – 9у = 10 не имеет решений в целых числах.

5) НОД(6; 9) = 3, 2 не делится на 3, следовательно, 6х + 9у = 2 не имеет решений в целых числах.

6) НОД(2; 5) = 1, 15 делится на 1, следовательно, 2х – 5у = 15 имеет решение в целых числах.


источники:

http://sibmama.ru/diofantvy-uravneniya.htm

http://resh.edu.ru/subject/lesson/7275/conspect/