Линейные уравнения 1 порядка и их свойства

Линейные уравнения первого порядка

Вы будете перенаправлены на Автор24

Линейные однородные дифференциальные уравнения первого порядка

Дифференциальное уравнение первого порядка, имеющее стандартний вид $y’+P\left(x\right)\cdot y=0$, где $P\left(x\right)$ — непрерывная функция, называется линейным однородным. Название «линейное» объясняется тем, что неизвестная функция $y$ и её первая производная $y’$ входят в состав уравнения линейно, то есть в первой степени. Название «однородное» объясняется тем, что в правой части уравнения находится нуль.

Такое дифференциальное уравнение можно решить методом разделения переменных. Представим его в стандартном виде метода: $y’=-P\left(x\right)\cdot y$, где $f_ <1>\left(x\right)=-P\left(x\right)$ и $f_ <2>\left(y\right)=y$.

Вычислим интеграл $I_ <1>=\int f_ <1>\left(x\right)\cdot dx =-\int P\left(x\right)\cdot dx $.

Вычислим интеграл $I_ <2>=\int \frac \left(y\right)> =\int \frac =\ln \left|y\right|$.

Запишем общее решение в виде $\ln \left|y\right|+\int P\left(x\right)\cdot dx =\ln \left|C_ <1>\right|$, где $\ln \left|C_ <1>\right|$ — произвольная постоянная, взятая в удобном для дальнейших преобразований виде.

\[\ln \left|y\right|-\ln \left|C_ <1>\right|=-\int P\left(x\right)\cdot dx ; \ln \frac<\left|y\right|> <\left|C_<1>\right|> =-\int P\left(x\right)\cdot dx .\]

Используя определение логарифма, получим: $\left|y\right|=\left|C_ <1>\right|\cdot e^ <-\int P\left(x\right)\cdot dx >$. Это равенство, в свою очередь, эквивалентно равенству $y=\pm C_ <1>\cdot e^ <-\int P\left(x\right)\cdot dx >$.

Заменив произвольную постоянную $C=\pm C_ <1>$, получим общее решение линейного однородного дифференциального уравнения: $y=C\cdot e^ <-\int P\left(x\right)\cdot dx >$.

Решив уравнение $f_ <2>\left(y\right)=y=0$, найдем особые решения. Обычной проверкой убеждаемся, что функция $y=0$ является особым решением данного дифференциального уравнения.

Однако это же решение можно получить из общего решения $y=C\cdot e^ <-\int P\left(x\right)\cdot dx >$, положив в нём $C=0$.

Таким образом, окончательный результат: $y=C\cdot e^ <-\int P\left(x\right)\cdot dx >$.

Общий метод решения линейного однородного дифференциального уравнения первого порядка можно представить в виде следующего алгоритма:

  1. Для решения данного уравнения его сначала следует представить в стандартном виде метода $y’+P\left(x\right)\cdot y=0$. Если добиться этого не удалось, то данное дифференциальное уравнение должно решаться иным методом.
  2. Вычисляем интеграл $I=\int P\left(x\right)\cdot dx $.
  3. Записываем общее решение в виде $y=C\cdot e^ <-I>$ и при необходимости выполняем упрощающие преобразования.

Найти общее решение дифференциального уравнения $y’+3\cdot x^ <2>\cdot y=0$.

Имеем линейное однородное уравнение первого порядка в стандартном виде, для которого $P\left(x\right)=3\cdot x^ <2>$.

Вычисляем интеграл $I=\int 3\cdot x^ <2>\cdot dx =x^ <3>$.

Общее решение имеет вид: $y=C\cdot e^ <-x^<3>> $.

Линейные неоднородные дифференциальные уравнения первого порядка

Дифференциальное уравнение первого порядка, которое можно представить в стандартном виде $y’+P\left(x\right)\cdot y=Q\left(x\right)$, где $P\left(x\right)$ и $Q\left(x\right)$ — известные непрерывные функции, называется линейным неоднородным дифференциальным уравнением. Название «неоднородное» объясняется тем, что правая часть дифференциального уравнения отлична от нуля.

Решение одного сложного линейного неоднородного дифференциального уравнения может быть сведено к решению двух более простых дифференциальных уравнений. Для этого искомую функцию $y$ следует заменить произведением двух вспомогательных функций $u$ и $v$, то есть положить $y=u\cdot v$.

Выполняем дифференцирование принятой замены: $\frac =\frac \cdot v+u\cdot \frac $. Подставляем полученное выражение в данное дифференциальное уравнение: $\frac \cdot v+u\cdot \frac +P\left(x\right)\cdot u\cdot v=Q\left(x\right)$ или $\frac \cdot v+u\cdot \left[\frac +P\left(x\right)\cdot v\right]=Q\left(x\right)$.

Отметим, что если принято $y=u\cdot v$, то в составе произведения $u\cdot v$ одну из вспомогательных функций можно выбирать произвольно. Выберем вспомогательную функцию $v$ так, чтобы выражение в квадратных скобках обратилось в нуль. Для этого достаточно решить дифференциальное уравнение $\frac +P\left(x\right)\cdot v=0$ относительно функции $v$ и выбрать для неё простейшее частное решение $v=v\left(x\right)$, отличное от нуля. Это дифференциальное уравнение является линейным однородным и решается оно вышерассмотренным методом.

Полученное решение $v=v\left(x\right)$ подставляем в данное дифференциальное уравнение с учетом того, что теперь выражение в квадратных скобках равно нулю, и получаем еще одно дифференциальное уравнение, но теперь относительно вспомогательной функции $u$: $\frac \cdot v\left(x\right)=Q\left(x\right)$. Это дифференциальное уравнение можно представить в виде $\frac =\frac $, после чего становится очевидно, что оно допускает непосредственное интегрирование. Для этого дифференциального уравнения необходимо найти общее решение в виде $u=u\left(x,\; C\right)$.

Теперь можно найти общее решение данного линейного неоднородного дифференциального уравнения первого порядка в виде $y=u\left(x,C\right)\cdot v\left(x\right)$.

Общий метод решения линейного неоднородного дифференциального уравнения первого порядка можно представить в виде следующего алгоритма:

  1. Для решения данного уравнения его сначала следует представить в стандартном виде метода $y’+P\left(x\right)\cdot y=Q\left(x\right)$. Если добиться этого не удалось, то данное дифференциальное уравнение должно решаться иным методом.
  2. Вычисляем интеграл $I_ <1>=\int P\left(x\right)\cdot dx $, записываем частное решение в виде $v\left(x\right)=e^ <-I_<1>> $, выполняем упрощающие преобразования и выбираем для $v\left(x\right)$ простейший ненулевой вариант.
  3. Вычисляем интеграл $I_ <2>=\int \frac\cdot dx $, посля чего записываем выражение в виде $u\left(x,C\right)=I_ <2>+C$.
  4. Записываем общее решение данного линейного неоднородного дифференциального уравнения в виде $y=u\left(x,C\right)\cdot v\left(x\right)$ и при необходимости выполняем упрощающие преобразования.

Готовые работы на аналогичную тему

Найти общее решение дифференциального уравнения $y’-\frac =3\cdot x$.

Имеем линейное неоднородное уравнение первого порядка в стандартном виде, для которого $P\left(x\right)=-\frac<1> $ и $Q\left(x\right)=3\cdot x$.

Вычисляем интеграл $I_ <1>=\int P\left(x\right)\cdot dx =-\int \frac<1> \cdot dx=-\ln \left|x\right| $.

Записываем частное решение в виде $v\left(x\right)=e^ <-I_<1>> $ и выполняем упрощающие преобразования: $v\left(x\right)=e^ <\ln \left|x\right|>$; $\ln v\left(x\right)=\ln \left|x\right|$; $v\left(x\right)=\left|x\right|$. Вибираем для $v\left(x\right)$ простейший ненулевой вариант: $v\left(x\right)=x$.

Вычисляем интеграл $I_ <2>=\int \frac \cdot dx =\int \frac<3\cdot x> \cdot dx=3\cdot x $.

Записываем выражение $u\left(x,C\right)=I_ <2>+C=3\cdot x+C$.

Окончательно записываем общее решение данного линейного неоднородного дифференциального уравнения в виде $y=u\left(x,C\right)\cdot v\left(x\right)$, то есть $y=\left(3\cdot x+C\right)\cdot x$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 26 11 2021

Решение линейных дифференциальных уравнений первого порядка

Определения и методы решений

Линейное дифференциальное уравнение первого порядка – это уравнение вида
,
где p и q – функции переменной x .

Линейное однородное дифференциальное уравнение первого порядка – это уравнение вида
.

Линейное неоднородное дифференциальное уравнение первого порядка – это уравнение вида
.

Член q ( x ) называется неоднородной частью уравнения.

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:

Решение линейного дифференциального уравнения с помощью интегрирующего множителя

Рассмотрим метод решения линейного дифференциального уравнения первого порядка с помощью интегрирующего множителя.
Умножим обе части исходного уравнения (1) на интегрирующий множитель
:
(2)
Далее замечаем, что производная от интеграла равна подынтегральной функции:

По правилу дифференцирования сложной функции:

По правилу дифференцирования произведения:

Подставляем в (2):

Интегрируем:

Умножаем на . Получаем общее решение линейного дифференциального уравнения первого порядка:

Пример решения линейного дифференциального уравнения первого порядка

Разделим обе части исходного уравнения на x :
(i) .
Тогда
;
.
Интегрирующий множитель:

Знак модуля можно опустить, поскольку интегрирующий множитель можно умножать на любую постоянную (в том числе на ± 1 ).
Умножим (i) на x 3 :
.
Выделяем производную.
;
.
Интегрируем, применяя таблицу интегралов:
.
Делим на x 3 :
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 22-07-2012 Изменено: 25-02-2015

Линейные дифференциальные уравнения 1-го порядка
и уравнение Бернулли

Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и её производной. Оно имеет вид

где и — заданные функции от , непрерывные в той области, в которой требуется проинтегрировать уравнение (1).

Если , то уравнение (1) называется линейным однородным . Оно является уравнением с разделяющимися переменными и имеет общее решение

Общее решение неоднородного уравнения можно найти методом вариации произвольной постоянной , который состоит в том, что решение уравнения (1) ищется в виде

Пример 1. Решить уравнение .

Решение. Применим метод вариации постоянной. Рассмотрим однородное уравнение , соответствующее данному неоднородному уравнению. Это уравнение с разделяющимися переменными. Его общее решение имеет вид .

Общее решение неоднородного уравнения ищем в виде , где — неизвестная функция от . Подставляя, получаем , откуда . Итак, общее решение неоднородного уравнения будет , где — постоянная интегрирования.

Замечание. Может оказаться, что дифференциальное уравнение линейно относительно как функция от . Нормальный вид такого уравнения

Пример 2. Решить уравнение .

Решение. Данное уравнение является линейным, если рассматривать как функцию от :

Применяем метод вариации произвольной постоянной. Сначала решаем соответствующее однородное уравнение

которое является уравнением с разделяющимися переменными. Его общее решение имеет вид .

Общее решение уравнения ищем в виде , где — неизвестная функция от . Подставляя, получаем

Отсюда, интегрируя по частям, будем иметь

Исходное уравнение может быть проинтегрировано также следующим образом. Полагаем

где и — неизвестные функции от , одна из которых, например , может быть выбрана произвольно.

Подставляя в , после преобразования получаем

Определяя из условия , найдем затем из функцию , а следовательно, и решение уравнения . В качестве можно взять любое частое решение уравнения .

Пример 3. Решить задачу Коши: .

Решение. Ищем общее решение уравнения в виде ; имеем . Подставляя выражение для и в исходное уравнение, будем иметь

Функцию находим из условия . Беря любое частное решение последнего уравнения, например , и подставляя его, получаем уравнение , из которого находим функцию . Следовательно, общее решение уравнения будет

Используя начальное условие , получаем для нахождения уравнение , откуда ; так что решением поставленной задачи Коши будет функция .

Пример 4. Известно, что между силой тока и электродвижущей силой в цепи, имеющей сопротивление и самоиндукцию , существует зависимость , где и — постоянные. Если считать функцией времени , то получим линейное неоднородное уравнение для силы тока :

Найти силу тока для случая, когда и .

Решение. Имеем . Общее решение этого уравнения имеем вид . Используя начальное условие (13), получаем из , так что искомое решение будет

Отсюда видно, что при сила тока стремится к постоянному значению .

Пример 5. Дано семейство интегральных кривых линейного неоднородного уравнения .

Показать, что касательные в соответственных точках к кривым , определяемым линейным уравнением, пересекаются в одной точке (рис. 13).

Решение. Рассмотрим касательную к какой-либо кривой в точке .Уравнение касательной в точке имеет вид

По определению, в соответственных точках является постоянным, а переменным. Беря любые две касательные к линиям в соответственных точках, для координат точки их пересечения, получаем

Отсюда видно, что все касательные к кривым в соответственных точках ( фиксировано) пересекаются в одной и той же точке

Исключая в системе аргумент , получаем уравнение геометрического места точек .

Пример 6. Найти решение уравнения , удовлетворяющее условию: ограничено при .

Решение. Общее решение данного уравнения . Любое решение уравнения, получаемое из общего решения при , будет неограниченно, так как при функция ограничена, а . Отсюда следует, что данное уравнение имеет единственное решение , ограниченное при , которое получается из общего решения при .

Уравнение Бернулли

Дифференциальное уравнение Бернулли имеет вид

С помощью замены переменной уравнение Бернулли приводится к линейному уравнению и интегрируется как линейное.

Пример 7. Решить уравнение Бернулли .

Решение. Делим обе части уравнения на :

Делаем замену переменной , откуда . После подстановки последнее уравнение обратится в линейное уравнение

Замечание. Уравнение Бернулли может быть проинтегрировано также методом вариации постоянной, как и линейное уравнение, и с помощью подстановки .

Пример 8. Решить уравнение Бернулли .

Решение. Применим метод вариации произвольной постоянной. Общее решение соответствующего однородного уравнения имеет вид . Общее решение уравнения ищем в виде , где — новая неизвестная функция. Подставляя в исходное уравнение, будем иметь

Для нахождения функции получим уравнение с разделяющимися переменными, из которого, разделяя переменные и интегрируя, найдем

Итак, общее решение исходного уравнения .

Некоторые нелинейные уравнения первого порядка с помощью удачно найденной замены переменных сводятся к линейным уравнениям или к уравнениям Бернулли.

Пример 9. Решить уравнение .

Решение. Запишем данное уравнение в виде .

Деля обе части уравнения на , получаем .

Замена приводит это уравнение к линейному , общее решение которого .

Заменяя его выражением через , получаем общий интеграл данного уравнения .

В некоторых уравнениях искомая функция может находиться под знаком интеграла. В этих случаях иногда удается путем дифференцирования свести данное уравнение к дифференциальному.

Пример 10. Решить уравнение 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAUQAAABNBAMAAAAsvACJAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAAUbAgWgQITGh8LHQkeBuUEPaAAAHI0lEQVRo3u1afWxTVRQ/97XvtbUbvG6OwJxrmcMpzHRjgBLULQRJEGTFMBMRWQMaiSBrMBJCjBtEQSdmi5sJEc0o4hAXQ8N3gnEDEwxfo3HxD8jIhMlfRnHdxjYm1HPfu+36um4QPCRN2E229vX1nv7u+fj9zr0twNh4AIcyxZfsEFfl/ZLsEF+DBckO8RBMpTZpca0ntTcD3CotQjYl/6KHGCK1F4OVa1xJDhGWA2lg6mEFOcSvFS9l4uTDZWKA1r6rMiVEmPTbEeqCPr/gV1qLG+8Dk7Ex1U7C4Uh6k9bOWmqE1s4CUnubXt5NDXHd3G9J7X35SC81xNI3ekhZbMDyCjXlNCnzKe1lhBhxpwNpxGFJv0Fez7Z+WnsVJ8ghZvpp7bnJKQdqaCmHdXioEbLyElp7F6rIvdhM2nODElbJvbifdmcudZM70XqTdtWPDsS69Cj//+5oLbM1MMINU3RWRnccRFlL9x33TIuxUmXSkkgSKOSiBJW0PSF+C846Fbmw3xp2mqAJtwj/tNl3yJOcuBU6QzEXC/ENT4CjXjgM035LvIGTCeXkIFp9KXKVLcTlzQj+RrTlgbQW/fK9AVBGYRE29fLVOFrsi4nzd/iHLqgWnurwQmecAbkldomy/mD+k4e2MlIklaHodF1skIPsu4BdE9nfC7auUXqG3bDMZ+SwGCUwt+j6mqLzGjsH1viOJduw/nSB18Eh2oQGMLcA0CrucuzOALAV+rW5D8YNU7TPoqhsu8AZNNxriFECDi0VvWrWLaBD5VC8cPgSQWQcohxZbOmVyHR9LMabbk90rukKVAaHEcvsiOFxhZCOBt6ZIc8Qxq/r7/70GKS5KlxgXtxTAhLvLJS2L0LmRT3z44RD5bNXPifKKxbiRNE8sGKt3NIWDM5V2lzwEcwBWFpc74NMj1aDNbW5DfURckdbevVIRZNFcSDELlCeyfrD7RLMrUVOmTUH3euugpXuAy6wcN9VLym/Ibmn87etz+Ejj7+xTgXlWNbpak+cF/k/USUsrOWJdVooz5bbBT+pewC2nMnxQjpmgvLzW/s9W4pzRJoikogtS52O0V3Imy97lcnfrOueFNYezZMHmduDLmI8IvzDlCZ46ATUaNNz5/Exlz8twmRxmRobXMMDzUTeWsP6zawT8KR9F2vir7NB7nPMKXsjdPhYZ6Tm0NYNYQssXy3RIBaAKYSF6KxdLSpE1z8Zk67DV4rPO3z6h9lCUBGE8hgB550vQ4gSZAb4bHnevMWI3BuFuEeUeVhPK5yeV1Er9fIFS9zDpkIEEGTPq5aeIUrILlgdORewtLuiEJmWvTrNCiWw+1mryhOtVfgj088wF5rjWJRDdAjfZowAMVXXPz4dyl3mfg7R3C8gNrjYgKEIK4e6ImURh1ih5SIWXaR+skXZZQaUAX4WqnA95BArC5HX2DfazQ8NgQbhW4eaONDp3UO02Kya/Px1k18PNCtWOS3GNPrl0a4IA839mVkIWX5YU3JGFdadvZHFICFiuaT1WgJauVSUsHOTNvYoLcZyaVPBFmxWs9QEuShMZepQWSuqchGMD3DvOgPpWC7Ijc8iq5Vlt9iqZM1JMbYsdTpYJHlnLbh3dMMLQlwEU1SUmPrA6cIYmKpAQm4cF7QNrpVCtrjWD3PBfeQ2LI2j7n8dWCYho7h0o9b/COUeOI4QS3BGJsb0ElT/c9QZfB3cjdrHz/pe2JLqJus5KYUAU2Rd+/ttQkDKhRLIP7RegfQSmNCEImxG6rT+NfPSAeXs4TiKRaVY255fFzRANIfDWMWyMOUWYby00wvVO69XcVWxncYZNZgfq45/vi+Yuq8WNmkLSWnP3xnUqTvqi2Vl/JxgM9ssrjsi4rIS81bmAuhVIYXPmqhafCB5EwjgZtgaL4AO9KItYBAXsCAiR16rLoDb8AVNADfAau2KaamNtjZoj58MqZalzCjRxbo/LE3wohcm7B0S1RGGbNg5ZRi2ksIPzUMdZUoXZxubiNg1g6XCEVsdI4swQbNSr8wPdsSXRPWjdHMnR7QW+YbpwlCn4Sz4oFZvxvhn/G4Q5eDdnpYImlUOnvVpZK+p66lRZmwfqSW3njKuWm+KZ/KHV/WW1rCPs3nvdudyW431h/L0nTcGI2277SI7pNj9mn7OKGugj93btuDhAfLNlZxgv/Z/tlt28nM7SO2htZfdTw7RFCI+c/KTQ3R2PWhnTlBKfubERZl0FHvJITbQHmOJfpDU5N+k5rZJ5JzzsYWUc6w3J1EXNAtn7CU9Wrz1tosa4r51tCe0y6+Rfym7/DniNav01UJPEWMjGYeS60t2iCmPT092iI+Jg22q8dShuipiiBdpfzulBKeOp+Zu4h/JKd6F5IFGiLTMOPN+QKT0otQSSqUWgzbaH2zK5w+VUXtxO/HPXrdayXk29fCspJeXjTA2kmX8B/XH3ORQKCpxAAAAAElFTkSuQmCC» style=»vertical-align: middle;» />.

Решение. Дифференцируя обе части этого уравнения по , получаем

Дифференцируя еще раз по , будем иметь линейное однородное уравнение относительно

Разделяя переменные и интегрируя, найдем . Это решение, как легко проверить, удовлетворяет исходному уравнению.


источники:

http://1cov-edu.ru/differentsialnye-uravneniya/pervogo-poryadka/linejnye/

http://mathhelpplanet.com/static.php?p=linyeinye-differentsialnye-uravneniya-pervogo-poryadka-i-uravnenie-bernulli