Линейные уравнения и приводящиеся к ним

Дифференциальные уравнения первого порядка, приводящиеся к линейным

Метод решения

К линейным уравнениям первого порядка приводится уравнения вида:
(1) ,
где z – функция от y ; p и q – функции от x .
Действительно, по правилу дифференцирования сложной функции:
.
Подставляя в (1), получаем уравнение, линейное относительно z :
.

Дифференциальные уравнения, линейные относительно переменной x

Ранее мы рассматривали уравнения, линейные относительно переменной y . То есть мы считали, что x является независимой переменной, а y является зависимой переменной. Однако, всегда стоит иметь в виду, что возможен противоположный подход. То есть можно считать переменную y независимой переменной, а x – зависимой переменной. На практике часто встречаются задачи, в которых уравнение линейно относительно переменной x , а не y . В общем виде такое уравнение можно записать так:
(2) ,
где P, Q, R –функции от y .

Покажем, что это уравнение линейно относительно переменной x . Для этого выполняем преобразования. Представим производную в виде отношения дифференциалов:
.
Тогда уравнение (2) примет вид:
.
Умножаем на и выполняем алгебраические преобразования:
;
.
Разделив на R ( y ) , приводим уравнение к виду:
,
где .
Это – линейное относительно x дифференциальное уравнение.

Пример решения дифференциального уравнения, приводящегося к линейному уравнению первого порядка

Решить уравнение:
(П.1) .

Подставим в (П.1):
.
Считаем, что y – это независимая переменная, а x – зависимая. То есть x – это функция от y . Умножим на :
(П.2) .
Делаем подстановку:
.
Здесь z – сложная функция от y , .
Дифференцируем по y . По правилу дифференцирования сложной функции:
.
Подставляем в (П.2):
;
.
Это линейное, относительно z , дифференциальное уравнение. Решаем его с помощью интегрирующего множителя. Умножаем уравнение на интегрирующий множитель e y :
;
;
.
Интегрируем по частям:

;

;
;
.
Переходим к переменной x :
;
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 05-08-2012 Изменено: 26-06-2015

Линейные дифференциальные уравнения 1-го порядка
и уравнение Бернулли

Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и её производной. Оно имеет вид

где и — заданные функции от , непрерывные в той области, в которой требуется проинтегрировать уравнение (1).

Если , то уравнение (1) называется линейным однородным . Оно является уравнением с разделяющимися переменными и имеет общее решение

Общее решение неоднородного уравнения можно найти методом вариации произвольной постоянной , который состоит в том, что решение уравнения (1) ищется в виде

Пример 1. Решить уравнение .

Решение. Применим метод вариации постоянной. Рассмотрим однородное уравнение , соответствующее данному неоднородному уравнению. Это уравнение с разделяющимися переменными. Его общее решение имеет вид .

Общее решение неоднородного уравнения ищем в виде , где — неизвестная функция от . Подставляя, получаем , откуда . Итак, общее решение неоднородного уравнения будет , где — постоянная интегрирования.

Замечание. Может оказаться, что дифференциальное уравнение линейно относительно как функция от . Нормальный вид такого уравнения

Пример 2. Решить уравнение .

Решение. Данное уравнение является линейным, если рассматривать как функцию от :

Применяем метод вариации произвольной постоянной. Сначала решаем соответствующее однородное уравнение

которое является уравнением с разделяющимися переменными. Его общее решение имеет вид .

Общее решение уравнения ищем в виде , где — неизвестная функция от . Подставляя, получаем

Отсюда, интегрируя по частям, будем иметь

Исходное уравнение может быть проинтегрировано также следующим образом. Полагаем

где и — неизвестные функции от , одна из которых, например , может быть выбрана произвольно.

Подставляя в , после преобразования получаем

Определяя из условия , найдем затем из функцию , а следовательно, и решение уравнения . В качестве можно взять любое частое решение уравнения .

Пример 3. Решить задачу Коши: .

Решение. Ищем общее решение уравнения в виде ; имеем . Подставляя выражение для и в исходное уравнение, будем иметь

Функцию находим из условия . Беря любое частное решение последнего уравнения, например , и подставляя его, получаем уравнение , из которого находим функцию . Следовательно, общее решение уравнения будет

Используя начальное условие , получаем для нахождения уравнение , откуда ; так что решением поставленной задачи Коши будет функция .

Пример 4. Известно, что между силой тока и электродвижущей силой в цепи, имеющей сопротивление и самоиндукцию , существует зависимость , где и — постоянные. Если считать функцией времени , то получим линейное неоднородное уравнение для силы тока :

Найти силу тока для случая, когда и .

Решение. Имеем . Общее решение этого уравнения имеем вид . Используя начальное условие (13), получаем из , так что искомое решение будет

Отсюда видно, что при сила тока стремится к постоянному значению .

Пример 5. Дано семейство интегральных кривых линейного неоднородного уравнения .

Показать, что касательные в соответственных точках к кривым , определяемым линейным уравнением, пересекаются в одной точке (рис. 13).

Решение. Рассмотрим касательную к какой-либо кривой в точке .Уравнение касательной в точке имеет вид

По определению, в соответственных точках является постоянным, а переменным. Беря любые две касательные к линиям в соответственных точках, для координат точки их пересечения, получаем

Отсюда видно, что все касательные к кривым в соответственных точках ( фиксировано) пересекаются в одной и той же точке

Исключая в системе аргумент , получаем уравнение геометрического места точек .

Пример 6. Найти решение уравнения , удовлетворяющее условию: ограничено при .

Решение. Общее решение данного уравнения . Любое решение уравнения, получаемое из общего решения при , будет неограниченно, так как при функция ограничена, а . Отсюда следует, что данное уравнение имеет единственное решение , ограниченное при , которое получается из общего решения при .

Уравнение Бернулли

Дифференциальное уравнение Бернулли имеет вид

С помощью замены переменной уравнение Бернулли приводится к линейному уравнению и интегрируется как линейное.

Пример 7. Решить уравнение Бернулли .

Решение. Делим обе части уравнения на :

Делаем замену переменной , откуда . После подстановки последнее уравнение обратится в линейное уравнение

Замечание. Уравнение Бернулли может быть проинтегрировано также методом вариации постоянной, как и линейное уравнение, и с помощью подстановки .

Пример 8. Решить уравнение Бернулли .

Решение. Применим метод вариации произвольной постоянной. Общее решение соответствующего однородного уравнения имеет вид . Общее решение уравнения ищем в виде , где — новая неизвестная функция. Подставляя в исходное уравнение, будем иметь

Для нахождения функции получим уравнение с разделяющимися переменными, из которого, разделяя переменные и интегрируя, найдем

Итак, общее решение исходного уравнения .

Некоторые нелинейные уравнения первого порядка с помощью удачно найденной замены переменных сводятся к линейным уравнениям или к уравнениям Бернулли.

Пример 9. Решить уравнение .

Решение. Запишем данное уравнение в виде .

Деля обе части уравнения на , получаем .

Замена приводит это уравнение к линейному , общее решение которого .

Заменяя его выражением через , получаем общий интеграл данного уравнения .

В некоторых уравнениях искомая функция может находиться под знаком интеграла. В этих случаях иногда удается путем дифференцирования свести данное уравнение к дифференциальному.

Пример 10. Решить уравнение 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAUQAAABNBAMAAAAsvACJAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAAUbAgWgQITGh8LHQkeBuUEPaAAAHI0lEQVRo3u1afWxTVRQ/97XvtbUbvG6OwJxrmcMpzHRjgBLULQRJEGTFMBMRWQMaiSBrMBJCjBtEQSdmi5sJEc0o4hAXQ8N3gnEDEwxfo3HxD8jIhMlfRnHdxjYm1HPfu+36um4QPCRN2E229vX1nv7u+fj9zr0twNh4AIcyxZfsEFfl/ZLsEF+DBckO8RBMpTZpca0ntTcD3CotQjYl/6KHGCK1F4OVa1xJDhGWA2lg6mEFOcSvFS9l4uTDZWKA1r6rMiVEmPTbEeqCPr/gV1qLG+8Dk7Ex1U7C4Uh6k9bOWmqE1s4CUnubXt5NDXHd3G9J7X35SC81xNI3ekhZbMDyCjXlNCnzKe1lhBhxpwNpxGFJv0Fez7Z+WnsVJ8ghZvpp7bnJKQdqaCmHdXioEbLyElp7F6rIvdhM2nODElbJvbifdmcudZM70XqTdtWPDsS69Cj//+5oLbM1MMINU3RWRnccRFlL9x33TIuxUmXSkkgSKOSiBJW0PSF+C846Fbmw3xp2mqAJtwj/tNl3yJOcuBU6QzEXC/ENT4CjXjgM035LvIGTCeXkIFp9KXKVLcTlzQj+RrTlgbQW/fK9AVBGYRE29fLVOFrsi4nzd/iHLqgWnurwQmecAbkldomy/mD+k4e2MlIklaHodF1skIPsu4BdE9nfC7auUXqG3bDMZ+SwGCUwt+j6mqLzGjsH1viOJduw/nSB18Eh2oQGMLcA0CrucuzOALAV+rW5D8YNU7TPoqhsu8AZNNxriFECDi0VvWrWLaBD5VC8cPgSQWQcohxZbOmVyHR9LMabbk90rukKVAaHEcvsiOFxhZCOBt6ZIc8Qxq/r7/70GKS5KlxgXtxTAhLvLJS2L0LmRT3z44RD5bNXPifKKxbiRNE8sGKt3NIWDM5V2lzwEcwBWFpc74NMj1aDNbW5DfURckdbevVIRZNFcSDELlCeyfrD7RLMrUVOmTUH3euugpXuAy6wcN9VLym/Ibmn87etz+Ejj7+xTgXlWNbpak+cF/k/USUsrOWJdVooz5bbBT+pewC2nMnxQjpmgvLzW/s9W4pzRJoikogtS52O0V3Imy97lcnfrOueFNYezZMHmduDLmI8IvzDlCZ46ATUaNNz5/Exlz8twmRxmRobXMMDzUTeWsP6zawT8KR9F2vir7NB7nPMKXsjdPhYZ6Tm0NYNYQssXy3RIBaAKYSF6KxdLSpE1z8Zk67DV4rPO3z6h9lCUBGE8hgB550vQ4gSZAb4bHnevMWI3BuFuEeUeVhPK5yeV1Er9fIFS9zDpkIEEGTPq5aeIUrILlgdORewtLuiEJmWvTrNCiWw+1mryhOtVfgj088wF5rjWJRDdAjfZowAMVXXPz4dyl3mfg7R3C8gNrjYgKEIK4e6ImURh1ih5SIWXaR+skXZZQaUAX4WqnA95BArC5HX2DfazQ8NgQbhW4eaONDp3UO02Kya/Px1k18PNCtWOS3GNPrl0a4IA839mVkIWX5YU3JGFdadvZHFICFiuaT1WgJauVSUsHOTNvYoLcZyaVPBFmxWs9QEuShMZepQWSuqchGMD3DvOgPpWC7Ijc8iq5Vlt9iqZM1JMbYsdTpYJHlnLbh3dMMLQlwEU1SUmPrA6cIYmKpAQm4cF7QNrpVCtrjWD3PBfeQ2LI2j7n8dWCYho7h0o9b/COUeOI4QS3BGJsb0ElT/c9QZfB3cjdrHz/pe2JLqJus5KYUAU2Rd+/ttQkDKhRLIP7RegfQSmNCEImxG6rT+NfPSAeXs4TiKRaVY255fFzRANIfDWMWyMOUWYby00wvVO69XcVWxncYZNZgfq45/vi+Yuq8WNmkLSWnP3xnUqTvqi2Vl/JxgM9ssrjsi4rIS81bmAuhVIYXPmqhafCB5EwjgZtgaL4AO9KItYBAXsCAiR16rLoDb8AVNADfAau2KaamNtjZoj58MqZalzCjRxbo/LE3wohcm7B0S1RGGbNg5ZRi2ksIPzUMdZUoXZxubiNg1g6XCEVsdI4swQbNSr8wPdsSXRPWjdHMnR7QW+YbpwlCn4Sz4oFZvxvhn/G4Q5eDdnpYImlUOnvVpZK+p66lRZmwfqSW3njKuWm+KZ/KHV/WW1rCPs3nvdudyW431h/L0nTcGI2277SI7pNj9mn7OKGugj93btuDhAfLNlZxgv/Z/tlt28nM7SO2htZfdTw7RFCI+c/KTQ3R2PWhnTlBKfubERZl0FHvJITbQHmOJfpDU5N+k5rZJ5JzzsYWUc6w3J1EXNAtn7CU9Wrz1tosa4r51tCe0y6+Rfym7/DniNav01UJPEWMjGYeS60t2iCmPT092iI+Jg22q8dShuipiiBdpfzulBKeOp+Zu4h/JKd6F5IFGiLTMOPN+QKT0otQSSqUWgzbaH2zK5w+VUXtxO/HPXrdayXk29fCspJeXjTA2kmX8B/XH3ORQKCpxAAAAAElFTkSuQmCC» style=»vertical-align: middle;» />.

Решение. Дифференцируя обе части этого уравнения по , получаем

Дифференцируя еще раз по , будем иметь линейное однородное уравнение относительно

Разделяя переменные и интегрируя, найдем . Это решение, как легко проверить, удовлетворяет исходному уравнению.

2.09. Линейные дифференциальные уравнения первого порядка

Определение. Линейным дифференциальным уравнением 1-го порядка называется уравнение, линейное относительно неизвестной функции и ее производной.

Общий вид ЛДУ 1-го порядка

, (1)

Где и — заданные непрерывные функции.

Заметим, что если , то уравнение (1) является однородным. В связи с этим уравнение (1) называется линейным неоднородным.

Рассмотрим два метода решения ЛДУ 1-го порядка.

1. Метод Бернулли.

Будем искать решение уравнения (1) в виде произведения двух неизвестных функций . Имеем

. (2)

Подберем функцию Так, чтобы , откуда . Тогда уравнение (2) приводится к виду . Откуда

. (3)

. (4)

1. Метод Лагранжа (метод вариации произвольной постоянной).

Рассмотрим ЛОДУ . Его общее решение имеет вид

. (5)

Будем считать постоянную произвольной дифференцируемой функцией , т. е. и подставим решение (5) в ЛНДУ (1). Получим . Откуда и общее решение имеет вид (4).

Замечание. Заметим структуру общего решения ЛДУ 1-го порядка:

ОР ЛДУ = ОР ЛОДУ + ЧР ЛНДУ.

Такая структура решения имеет фундаментальное значение в теории ЛДУ произвольного порядка N.

Пример. Найти общее решение уравнения .

Ищем решение в виде . Тогда уравнение преобразуется к виду . Приравнивая скобку нулю и, решая уравнение , находим . Тогда уравнение преобразуется к виду . Интегрируя это уравнение, находим . Окончательно,

.


источники:

http://mathhelpplanet.com/static.php?p=linyeinye-differentsialnye-uravneniya-pervogo-poryadka-i-uravnenie-bernulli

http://matica.org.ua/metodichki-i-knigi-po-matematike/obyknovennye-differentcialnye-uravneniia/2-09-lineinye-differentcialnye-uravneniia-pervogo-poriadka