Линейные уравнения методом квадратных корней

Линейные уравнения методом квадратных корней

Обсуждение и решение задач по математике, физике, химии, экономике

Часовой пояс: UTC + 3 часа [ Летнее время ]

Часовой пояс: UTC + 3 часа [ Летнее время ]новый онлайн-сервис
число, сумма и дата прописью

Введение в анализ

Теория очередей (СМО)

Страница находится по новому адресу

Часовой пояс: UTC + 3 часа [ Летнее время ]

МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ.

Метод квадратных корней.

Метод квадратных корней используется для решения линейной системы:

У которой матрица А симметрическая, т.е.

Он является более экономным и удобным по сравнению с методами решения систем общего вида, рассмотренными ранее.

Решение системы осуществляется в два этапа.

Прямой ход. Представим матрицу А в виде произведения двух взаимно транспонированных треугольных матриц:

Перемножая матрицы Т’ и Т и приравнивая матрице A, получим следующие формулы для определения

После того, как матрица Т найдена, систему заменяем двумя эквивалентными ей системами с треугольными матрицами:

Обратный ход. Записываем в развернутом виде системы:

Отсюда последовательно находим:

При вычислениях применяется обычный контроль с помощью сумм, причем при составлении суммы учитываются все коэффициенты соответствующей строки.

Заметим, что при действительных могут получиться чисто мнимые . Метод применим и в этом случае .

Метод квадратных корней дает большой выигрыш во времени по сравнению с рассмотренными ранее методами, так как, во-первых, существенно уменьшает число умножений и делений (почти в два раза для больших n), во-вторых, позволяет накапливать сумму произведений без записи промежуточных результатов.

Задание. Решить систему линейных уравнений методом квадратных корней.

Провести эту работу в SMathStudio.

Схема Халецкого.

Рассмотрим систему линейных уравнений, записанную в матричном виде:

Где — квадратная матрица (i, j = 1, 2, . , n) и

Представим матрицу А в виде произведения А=ВС, где

Тогда элементы будут определяться по формулам

Отсюда искомый вектор х может быть вычислен из цепи уравнений

Так как матрицы B и С треугольные, то системы легко решаются, а именно:

Из формул видно, что числа выгодно вычислять вместе с коэффициентами Эта схема вычислений называется схемой Халецкого. В схеме применяется обычный контроль с помощью сумм.

Схема Халецкого удобна для работы на клавишных вычислительных машинах, так как в этом случае операции «накопления» можно проводить без записи промежуточных результатов.

Задание. Решить систему линейных уравнений методом Халецкого.

Провести эту работу в SMathStudio.

Метод простой итерации

Пусть система линейных уравнений

Каким-либо образом приведена к виду

где С – некоторая матрица, а f – вектор-столбец.

Исходя из произвольного вектора ,

сторим итерационный процесс

или в развернутой форме

Производя итерации, получим последовательность векторов

Доказано, что если элементы матрицы С удовлетворяют одному из условий

то процесс итерации сходится к точному решению системы х при любом начальном векторе , т.е.

Таким образом, точное решение системы получается лишь в результате бесконечного процесса и всякий вектор из полученной последовательности является приближенным решением. Оценка погрешности этого приближенного решения дается одной из следующих формул:

Эти оценки можно усилить соответственно так:

Процесс итераций заканчивают, когда указанные оценки свидетельствуют о достижении заданной точности.

Начальный вектор может быть выбран, вообще говоря, произвольно. Иногда берут Однако наиболее целесообразно в качестве компонент вектора взять приближенные значения неизвестных, полученные грубой прикидкой.

Первый способ. Если диагональные элементы матрицы А отлины от нуля, т. е.

то систему можно записать в виде:

В этом случае элементы матрицы С определяются следующим образом:

и тогда условия приобретают вид:

Неравенства будут выполнены, если диагональные элементы матрицы А удовлетворяют условию:

т.е. если модули диагональных коэффициентов для каждого уравнения системы больше суммы модулей всех остальных коэффициентов (не считая свободных членов).

Второй способ покажем на примере.

Вообще говоря, для любой системы с невырожденной матрицей существуют сходящиеся итерационные методы решения, но далеко не всегда они удобны для практических вычислений.

Если метод итераций сходится, он дает следующие преимущества по сравнению с методами, рассмотренными выше.

1) Если итерации сходятся достаточно быстро, т. е. если для решения системы требуется менее n итераций, то получаем выигрыш во времени, так как число арифметических действий, необходимых для одной итерации, пропорционально n 2 , а общее число арифметических действий в методе Гаусса, например, пропорционально n 3 .

2) Погрешности округления в методе итераций сказываются значительно меньше, чем в методе Гаусса. Кроме того, метод итераций является самоисправляющимся, т. е. отдельная ошибка, допущенная в вычислениях, не отражается на окончательном результате, так как ошибочное приближение можно рассматривать как новый начальный вектор.

Последнее обстоятельство часто используется для уточнения значений неизвестных, полученных методом Гаусса.

3) Метод итераций становится особенно выгодным при решении систем, у которых значительное число коэффициентов равно нулю. Такие системы появляются, например, при решении уравнений в частных производных.

4) Процесс итераций приводит к выполнению однообразных операций и сравнительно легко программируется на ЭВМ.

Задание. Решить систему линейных уравнений методом простых итераций.

Провести эту работу в SMathStudio.

Метод Зейделя.

Метод Зейделя является модификацией метода простой итерации. Он заключается в том, что при вычислении (k + 1)-го приближения неизвестного xi при i>1 используются уже вычисленные ранее (k + 1)-е приближения неизвестных Таким образом, для системы вычисления по методу Зейделя ведутся по формулам:

Указанные в методе простой итерации условия сходимости остаются верными и для метода Зейделя. Обычно метод Зейделя дает лучшую сходимость, чем метод простой терации, хотя это бывает не всегда. Кроме того, метод Зейделя может оказаться более удобным при программировании, так как при вычислении нет необходимости хранить значения

Задание. Решить систему линейных уравнений методом Зейделя.

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Метод квадратных корней для решения СЛАУ
Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.


источники:

http://poisk-ru.ru/s3503t3.html

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij