Линейные уравнения неравенства с параметром

Неравенства с параметром

Напомню, что два неравенства называются равносильными, если их решения совпадают. При решении неравенств нужно понимать, какие преобразования будут равносильными, и какие нет:

  1. Перенос какого-либо члена неравенства из одной части в другую, при этом знак этого члена меняется на противоположный.
  2. Умножение или деление всего неравенства (левой и правой частей) на одно и то же положительное число.
  3. Умножение или деление всего неравенства на отрицательное число, при условии, что вы меняете знак неравенства.

Разберем несколько примеров простейших неравенств с параметром. Рассуждения здесь примерно такие же, что и при анализе уравнений. Как аналитически исследовать квадратные уравнения, можно познакомиться здесь.

Решить неравенство \((a-2)x>a^2-4\) для любого значения параметра \(a\).

Первый случай: Если \(a=2\), получим неравенство \(0*x>0\), которое не имеет решений.

Внимание! Важно помнить, что если вы делите неравенство на отрицательное число, то знак неравенства меняется на противоположный. Поэтому, нужно рассмотреть еще два случая.

Второй случай: Если \(a > 2 ⇔ x > \frac ⇔ x > a+2;\)

Третий случай: Если \(a 2\) $$ x > a+2;$$ при \(a Пример 2

Решить неравенство \(ax^2-4x-4>0\) при всех значениях параметра \(a\).

Первый случай: Если \(a=0\) , неравенство примет вид \(-4x-4>0 ⇔ x

Получаем, что дискриминант больше нуля при \(a > -1; D 0\) ветки параболы направлены вверх, а при \(a 0,D > 0\)

Учебное пособие «Уравнения и неравенства с параметрами»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Государственное бюджетное общеобразовательное учреждение

Самарской области средняя общеобразовательная

школа № 2 им. В. Маскина ж.-д. ст. Клявлино

муниципального района Клявлинский

« Уравнения и неравенства с параметрами» для учащихся 10 –11 классов

данное пособие является приложением к программе элективного курса «Уравнения и неравенства с параметрами», которая прошла внешнюю экспертизу (научно-методическим экспертным советом министерства образования и науки Самарской области от 19 декабря 2008 года бала рекомендована к использованию в образовательных учреждениях Самарской области)

Авторы

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Ромаданова Ирина Владимировна

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Сербаева Ирина Алексеевна

Линейные уравнения и неравенства с параметрами……………..4-7

Квадратные уравнения и неравенства с параметрами……………7-9

Дробно- рациональные уравнения с параметрами……………..10-11

Иррациональные уравнения и неравенства с параметрами……11-13

Тригонометрические уравнения и неравенства с параметрами.14-15

Показательные уравнения и неравенства с параметрами………16-17

Логарифмические уравнения и неравенства с параметрами…. 16-18

Задания для самостоятельной работы…………………………. 21-28

Уравнения и неравенства с параметрами.

Если в уравнении или неравенстве некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а само уравнение или неравенство параметрическим.

Для того, чтобы решить уравнение или неравенство с параметрами необходимо:

Выделить особое значение — это то значение параметра, в котором или при переходе через которое меняется решение уравнения или неравенства.

Определить допустимые значения – это значения параметра, при которых уравнение или неравенство имеет смысл.

Решить уравнение или неравенство с параметрами означает:

1) определить, при каких значениях параметров существуют решения;

2) для каждой допустимой системы значений параметров найти соответствующее множество решений.

Решить уравнение с параметром можно следующими методами: аналитическим или графическим.

Аналитический метод предполагает задачу исследования уравнения рассмотрением нескольких случаев, ни один из которых нельзя упустить.

Решение уравнения и неравенства с параметрами каждого вида аналитическим методом предполагает подробный анализ ситуации и последовательное исследование, в ходе которого возникает необходимость «аккуратного обращения» с параметром.

Графический метод предполагает построение графика уравнения, по которому можно определить, как влияет соответственно, на решение уравнения изменение параметра. График подчас позволяет аналитически сформулировать необходимые и достаточные условия для решения поставленной задач. Графический метод решения особенно эффективен тогда, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра и обладает несомненным преимуществом увидеть это наглядно.

§ 1. Линейные уравнения и неравенства.

Линейное уравнение а x = b , записанное в общем виде, можно рассматривать как уравнение с параметрами, где x – неизвестное, a , b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра a является значение а = 0.

Если а ¹ 0, то при любой паре параметров а и b оно имеет единственное решение х=.

Если а = 0, то уравнение принимает вид : 0х= b . В этом случае значение

b = 0 является особым значением параметра b .

При b ¹ 0 уравнение решений не имеет.

При b = 0 уравнение примет вид: 0х = 0. Решением данного уравнения является любое действительное число.

Неравенства вида ах > b и ax b ( а ≠ 0) называются линейными неравенствами. Множество решений неравенства ах > b – промежуток

(; +), если a > 0 , и (-;) , если а . Аналогично для неравенства

ах b множество решений – промежуток (-;), если a > 0, и (; +), если а

Пример 1. Решить уравнение ах = 5

Решение : Это линейное уравнение .

Если а = 0, то уравнение 0 × х = 5 решения не имеет.

Если а ¹ 0, х = — решение уравнения.

Ответ: при а ¹ 0, х=

при а = 0 решения нет.

Пример 2. Решить уравнение ах – 6 = 2а – 3х.

Решение: Это линейное уравнение, ах – 6 = 2а – 3х (1)

ах + 3х = 2а +6

Переписав уравнение в виде (а+3)х = 2(а+3), рассмотрим два случая:

Если а= -3, то любое действительное число х является корнем уравнения (1). Если же а ¹ -3, уравнение (1) имеет единственный корень х = 2.

Ответ: При а = -3, х R ; при а ¹ -3, х = 2.

Пример 3. При каких значениях параметра а среди корней уравнения

2ах – 4х – а 2 + 4а – 4 = 0 есть корни больше 1 ?

Решение: Решим уравнение 2ах – 4х – а 2 + 4а – 4 = 0 – линейное уравнение

2(а — 2) х = а 2 – 4а +4

2(а — 2) х = (а – 2) 2

При а = 2 решением уравнения 0х = 0 будет любое число, в том числе и большее 1.

При а ¹ 2 х =. По условию х > 1, то есть >1, а > 4.

Ответ: При а <2>U (4;∞).

Пример 4. Для каждого значения параметра а найти количество корней уравнения ах=8.

Решение. ах = 8 – линейное уравнение.

а =,

y = a – семейство горизонтальных прямых;

y = графиком является гипербола. Построим графики этих функций.

Ответ: Если а =0, то уравнение решений не имеет. Если а ≠ 0, то уравнение имеет одно решение.

Пример 5. С помощью графиков выяснить, сколько корней имеет уравнение:

y = ах – 1 – графиком является прямая, проходящая через точку (0;-1).

Построим графики этих функций.

Ответ:При|а|>1— один корень

при | а|≤1 – уравнение корней не имеет.

Решение : ах + 4 > 2х + а 2 (а – 2) х > а 2 – 4. Рассмотрим три случая.

а=2 . Неравенство 0 х > 0 решений не имеет.

а > 2. (а – 2) х > ( а – 2)(а + 2) х > а + 2

а (а – 2) х > ( а – 2)(а + 2) х а + 2

Ответ. х > а + 2 при а > 2; х при а при а=2 решений нет.

§ 2. Квадратные уравнения и неравенства

Для решения квадратных уравнений с параметром можно использовать стандартные способы решения на применение следующих формул:

1 ) дискриминанта квадратного уравнения: D = b ² — 4 ac , (²- ас)

2) формул корней квадратного уравнения: х 1 =, х 2 =,

1,2 = )

Квадратными называются неравенства вида

Множество решений неравенства (3) получается объединением множеств решений неравенства (1) и уравнения , a х 2 + b х + с=0. Аналогично находится множество решений неравенства (4).

Если дискриминант квадратного трехчлена a х 2 + b х + с меньше нуля, то при а >0 трехчлен положителен при всех х R .

Если квадратный трехчлен имеет корни (х 1 2 ), то при а > 0 он положителен на множестве (-; х 2 )( х 2; +) и отрицателен на интервале

1 ; х 2 ). Если а 1 ; х 2 ) и отрицателен при всех х (-; х 1 )( х 2; +).

Пример 1. Решить уравнение ах² — 2 (а – 1)х – 4 = 0.

Это квадратное уравнение

Решение: Особое значение а = 0.

При а = 0 получим линейное уравнение 2х – 4 = 0. Оно имеет единственный корень х = 2.

При а ≠ 0. Найдем дискриминант.

Если а = -1, то D = 0 – один корень.

Найдем корень, подставив вместо а = -1.

-х² + 4х – 4= 0, то есть х² -4х + 4 = 0, находим, что х=2.

Если а ≠ — 1 , то D >0 . По формуле корней получим: х=;

х 1 =2, х 2 =.

Ответ: При а=0 и а= -1 уравнение имеет один корень х = 2; при а ≠ 0 и

а ≠ — 1 уравнение имеет два корня х 1 =2, х 2 =-.

Пример 2. Найдите количество корней данного уравнения х²-2х-8-а=0 в зависимости от значений параметра а.

Решение. Перепишем данное уравнение в виде х²-2х-8=а

y = х²-2х-8— графиком является парабола;

y — семейство горизонтальных прямых.

Построим графики функций.

Ответ: При а -9, уравнение имеет два решения.

Пример 3. При каких а неравенство (а – 3) х 2 – 2ах + 3а – 6 >0 выполняется для всех значений х ?

Решение. Квадратный трехчлен положителен при всех значениях х, если

, откуда следует, что a > 6 .

§ 3. Дробно- рациональные уравнения с параметром,

сводящиеся к линейным

Процесс решения дробных уравнений выполняется по обычной схеме: дробное заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего решается целое уравнение, исключая посторонние корни, то есть числа, которые обращают знаменатель в нуль.

В случае уравнений с параметром эта задача более сложная. Здесь, чтобы «исключить» посторонние корни, требуется найти значение параметра, обращающее общий знаменатель в нуль, то есть решить соответствующие уравнения относительно параметра.

Пример 1. Решить уравнение = 0

Это дробно- рациональное уравнение

Решение: Д.З: х +2 ≠ 0 , х ≠ -2

При а = -2 корней нет.

Пример 2 . Решить уравнение= (1)

Это дробно- рациональное уравнение

Решение: Значение а = 0 является особым. При а = 0 уравнение теряет смысл и, следовательно, не имеет корней. Если а ≠ 0, то после преобразований уравнение примет вид: х² + 2 (1-а) х + а² — 2а – 3 = 0 (2) – квадратное уравнение.

Найдем дискриминант = (1 – а)² — (а² — 2а – 3)= 4, находим корни уравнения х 1 = а + 1, х 2 = а — 3.

При переходе от уравнения (1) к уравнению (2) расширилась область определения уравнения (1), что могло привести к появлению посторонних корней. Поэтому, необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых

х 1+1=0, х 1+2=0, х2+1=0, х2+2=0.

Если х 1+2=0, то есть (а+1)+2=0, то а = — 3. Таким образом, при а = — 3, х1 посторонний корень уравнения. (1).

Если х2+1=0, то есть (а – 3) + 1= 0, то а = 2. Таким образом, при а = 2 х2 посторонний корень уравнения (1).

Если х2+2=0, то есть (а – 3) + 2 = 0, то а=1. Таким образом, при а = 1,

х2 — посторонний корень уравнения (1).

В соответствии с этим при а = — 3 получаем х = — 3 – 3 = -6;

при а = — 2 х = -2 – 3= — 5;

при а = 1 х =1 + 1= 2;

при а = 2 х=2+1 = 3.

Можно записать ответ.

Ответ: 1) если а= -3, то х= -6; 2) если а= -2, то х= -5; 3) если а= 0, то корней нет; 4) если а= 1, то х= 2; 5) если а=2, то х=3; 6) если а ≠ -3, а ≠ -2, а ≠ 0, а≠ 1, а ≠ 2, то х1 = а + 1, х2 = а-3.

§4. Иррациональные уравнения и неравенства

Уравнения и неравенства, в которых переменная содержится под знаком корня, называется иррациональным.

Решение иррациональных уравнений сводится к переходу от иррационального к рациональному уравнению путем возведения в степень обеих частей уравнения или замены переменной. При возведении обеих частей уравнения в четную степень возможно появление посторонних корней. Поэтому при использовании указанного метода следует проверить все найденные корни подстановкой в исходное уравнение, учитывая при этом изменения значений параметра.

Уравнение вида = g ( x ) равносильно системе

Неравенство f ( x ) ≥ 0 следует из уравнения f ( x ) = g 2 ( x ).

При решении иррациональных неравенств будем использовать следующие равносильные преобразования:

≤ g(x) ≥g(x)

Пример 1. Решите уравнение = х + 1 (3)

Это иррациональное уравнение

Решение: По определению арифметического корня уравнение (3) равносильно системе .

При а = 2 первое уравнение системы имеет вид 0 х = 5, то есть не имеет решений.

При а≠ 2 х=. Выясним, при каких значениях а найденное значение х удовлетворяет неравенству х ≥ -1: ≥ — 1, ≥ 0,

откуда а ≤ или а > 2.

Ответ: При а≤, а > 2 х= , при уравнение решений не имеет.

Пример 2. Решить уравнение = а (приложение 4)

Решение. y =

y = а – семейство горизонтальных прямых.

Построим графики функций.

Пример 3 . Решим неравенство (а+1)

Решение. О.Д.З. х ≤ 2. Если а+1 ≤0, то неравенство выполняется при всех допустимых значениях х. Если же а+1>0, то

(а+1)

откуда х (2- 2

Ответ. х (- ;2 при а ( —;-1, х (2- 2

при а ( -1;+).

§ 5. Тригонометрические уравнения и неравенства.

Приведем формулы решений простейших тригонометрических уравнений:

Sinx = a x= (-1) n arcsin a+πn, n Z, ≤1, (1)

Cos x = a x = ±arccos a + 2 πn, , n Z, ≤1. (2)

Если >1, то уравнения (1) и (2) решений не имеют .

tg x = a x= arctg a + πn, n Z, aR

ctg x = a x = arcctg a + πn, n Z, aR

Для каждого стандартного неравенства укажем множество решений:

1. sin x > a arcsin a + 2 πn Z,

при a xR ; при a ≥ 1, решений нет.

при а≤-1, решений нет; при а >1, xR

3. cos x > a arccos a + 2 πn x arccos a + 2 πn , n Z ,

при а xR ; при a ≥ 1 , решений нет.

при а≤-1 , решений нет ; при a > 1, x R

5. tg x > a, arctg a + πnZ

Пример1. Найти а, при которых данное уравнение имеет решение:

Cos 2 x + 2(a-2)cosx + a 2 – 4a – 5 =0.

Решение. Запишем уравнение в виде

Уравнение cosx = 5- а имеет решения при условии -1≤ 5- а ≤1 4≤ а ≤ 6, а уравнение cosx = — а-1 при условии -1≤ -1- а ≤ 1 -2 ≤ а ≤0.

Ответ. а -2; 0 4; 6

Пример 2. При каких b найдется а такое, что неравенство + b > 0 выполняется при всех х ≠ πn , n Z .

Решение. Положим а = 0. Неравенство выполняется при b >0. Покажем теперь, что ни одно b ≤0 не удовлетворяет условиям задачи. Действительно, достаточно положить х = π /2, если а π /2 при а ≥0.

§ 6. Показательные уравнения и неравенства

1. Уравнение h ( x ) f ( x ) = h ( x ) g ( x ) при h ( x ) > 0 равносильно совокупности двух систем и

2. В частном случае ( h ( x )= a ) уравнение а f ( x ) = а g ( x ) при а > 0, равносильно совокупности двух систем

и

3. Уравнение а f ( x ) = b , где а > 0, a ≠1, b >0, равносильно уравнению

f ( x )= log a b . Случай а =1 рассматриваем отдельно.

Решение простейших показательных неравенств основано на свойстве степени. Неравенство вида f ( a x ) > 0 при помощи замены переменной t = a x сводится к решению системы неравенств а затем к решению соответствующих простейших показательных неравенств.

При решении нестрого неравенства необходимо к множеству решений строгого неравенства присоединить корни соответствующего уравнения. Как и при решении уравнений во всех примерах, содержащих выражение а f ( x ) , предполагаем а > 0. Случай а = 1 рассматриваем отдельно.

Пример 1 . При каких а уравнение 8 х = имеет только положительные корни?

Решение. По свойству показательной функции с основанием, большим единицы, имеем х>0 8 х >1 >1 >0, откуда a (1,5;4).

Ответ. a (1,5;4).

Решение. Рассмотрим три случая:

1. а . Так как левая часть неравенства положительна, а правая отрицательна, то неравенство выполняется для любых х R .

3. а > 0 . a 2 ∙2 x > a 2 x > x > — log 2 a

Ответ. х R при а > 0; решений нет при a =0; х (- log 2 a ; +) при а> 0 .

§ 7. Логарифмические уравнения и неравенства

Приведем некоторые эквивалентности, используемые при решении логарифмических уравнений и неравенств.

В частности, если а >0, а ≠1, то

log a g (x)= log a h(x)

2. Уравнение log a g (x)=b g (x)= a b ( а >0, a ≠ 1, g(x) >0).

3. Неравенство log f ( x ) g ( x ) ≤ log f ( x ) h ( x ) равносильно совокупности двух систем: и

Если а, b – числа, а >0, а ≠1, то

log a f (x) ≤ b

log a f (x) > b

Пример 1. Решите уравнение

Решение. Найдем ОДЗ: х > 0, х ≠ а 4 , a > 0, а ≠ 1. Преобразуем уравнение

log х – 2 = 4 – log a x log х + log a x – 6 = 0, откуда log a x = — 3

х = а -3 и log a x = 2 х = а 2 . Условие х = а 4 а – 3 = а 4 или а 2 = а 4 не выполняется на ОДЗ.

Ответ: х = а -3 , х = а 2 при а ( 0; 1) (1; ).

Пример 2. Найдите наибольшее значение а, при котором уравнение

2 log + a = 0 имеет решения.

Решение. Выполним замену = t и получим квадратное уравнение 2 t 2 – t + a = 0. Решая, найдем D = 1-8 a . Рассмотрим D ≥0, 1-8 а ≥0 а.

При а = квадратное уравнение имеет корень t = >0.

Ответ. а =

Пример 3 . Решить неравенство log ( x 2 – 2 x + a ) > — 3

Решение. Решим систему неравенств

Корни квадратных трехчленов х 1,2 = 1 ± и х 3,4 = 1 ±.

Критические значения параметра : а = 1 и а = 9.

Пусть Х1 и Х2 – множества решений первого и второго неравенств, тогда

Х 1 Х 2 = Х – решение исходного неравенства.

При 0 a 1 = (- ;1 — )( 1 + ; +), при а > 1 Х 1 = (-;+).

При 0 a 2 = (1 —; 1 +), при а ≥9 Х 2 – решений нет.

Рассмотрим три случая:

1. 0 a ≤1 Х = (1 —;1 — )(1 + ;1 +).

3. a ≥ 9 Х – решений нет.

Высокий уровень С1, С2

Пример 1. Найдите все значения р, при которых уравнение

р ∙ ctg 2 x + 2 sinx + p = 3 имеет хотя бы один корень.

Решение. Преобразуем уравнение

р ∙ ( — 1) + 2 sinx + p = 3, sinx = t , t , t 0.

p + 2 t + p = 3, + 2 t = 3, 3 -2t = , 3t 2 – 2t 3 = p .

Пусть f ( y ) = 3 t 2 – 2 t 3 . Найдем множество значений функции f ( x ) на . у / = 6 t – 6 t 2 , 6 t — 6 t 2 = 0, t 1 =0, t 2 = 1. f (-1) = 5, f (1) = 1.

При t , E ( f ) = ,

При t , E ( f ) = , то есть при t , E ( f ) = .

Чтобы уравнение 3 t 2 – 2 t 3 = p ( следовательно, и данное) имело хотя бы один корень необходимо и достаточно p E ( f ), то есть p .

Ответ. .

При каких значениях параметра а уравнение log (4 x 2 – 4 a + a 2 +7) = 2 имеет ровно один корень?

Решение. Преобразуем уравнение в равносильное данному:

4 x 2 – 4 a + a 2 +7 = (х 2 + 2) 2 .

Отметим, что если некоторое число х является корнем полученного уравнения, то число – х также является корнем этого уравнения. По условию это не выполнимо, поэтому единственным корнем является число 0.

4∙ 0 2 — 4 a + a 2 +7 = (0 2 + 2) 2 ,

1) a 1 = 1. Тогда уравнение имеет вид: log (4 x 2 +4) =2. Решаем его

4 x 2 + 4 = (х 2 + 2) 2 , 4 x 2 + 4 = х 4 + 4 x 2 + 4, х 4 = 0, х = 0 – единственный корень.

2) a 2 = 3. Уравнение имеет вид: log (4 x 2 +4) =2 х = 0 – единственный корень.

Высокий уровень С4, С5

Пример 3. Найдите все значения р, при которых уравнение

х 2 – ( р + 3)х + 1= 0 имеет целые корни и эти корни являются решениями неравенства: х 3 – 7рх 2 + 2х 2 – 14 рх — 3х +21 р ≤ 0.

Решение. Пусть х 1, х 2 – целые корни уравнения х 2 – ( р + 3)х + 1= 0. Тогда по формуле Виета справедливы равенства х 1 + х 2 = р + 3, х 1 ∙ х 2 = 1. Произведение двух целых чисел х 1 , х 2 может равняться единице только в двух случаях: х 1 = х 2 = 1 или х 1 = х 2 = — 1. Если х 1 = х 2 = 1, то р + 3 = 1+1 = 2 р = — 1; если х 1 = х 2 = — 1, то р + 3 = — 1 – 1 = — 2 р = — 5. Проверим являются ли корни уравнения х 2 – ( р + 3)х + 1= 0 в описанных случаях решениями данного неравенства. Для случая р = — 1, х 1 = х 2 = 1 имеем

1 3 – 7 ∙ (- 1) ∙ 1 2 +2∙ 1 2 – 14 ∙ ( — 1) ∙ 1 – 3 ∙ 1 + 21 ∙ ( — 1) = 0 ≤ 0 – верно; для случая р = — 5, х1 = х2 = — 1 имеем ( — 1) 3 – 7 ∙ ( — 5) ∙ ( -1) 2 + 2 ∙ (-1) 2 – 14 ∙ ( -5) × ( — 1) – 3 ∙ ( — 1) + 21∙ ( -5 ) = — 136 ≤ 0 – верно. Итак, условию задачи удовлетворяют только р = — 1 и р = — 5.

Пример 4. Найдите все положительные значения параметра а, при которых число 1 принадлежит области определения функции

у = ( аа ).

Решение. у = ( аа ). Область определения данной функции составляют все значения х, для которых аа ≥ 0.

Если значения х = 1 принадлежит области определения, то должно выполняться неравенство а а ≥ 0, а а (1)

Таким образом, необходимо найти все а > 0, удовлетворяющие неравенству (1).

1) а = 1 удовлетворяет неравенству (1).

2) При а > 1 неравенство (1) равносильно неравенству 2 + 5аа 2 +6,

а 2 — 5а + 4 ≤ 0. Решение этого неравенства: 1≤ а ≤ 4. Учитывая условие а >1, получим 1

а 2 — 5а + 4 ≥ 0. Его решение а ≤ 1; а ≥ 4 с учетом условия 0

Линейные уравнения неравенства с параметром

Линейные уравнения и неравенства с параметром

Уравнение вида

ax + b = 0,(1)

где a,b О R, x — переменная, называется уравнением первой степени (линейным уравнением).

Ниже приведены примеры линейных уравнений:

a) 2x + 6 = 0,где a = 2, b = 6;
b) x — 2 = 0где a = 1, b = -2;
c) 0·x + 0 = 0,где a = b = 0;
d) 0·x + 1 /3 = 0,где a = 0, b = 1 /3;
e) — 1 /2x = 0,где a = — 1 /2; b = 0.

Уравнение (1) равносильно уравнению ax = —b откуда следует следующее утверждение.

Утверждение 1.

  1. Если a ≠ 0, то уравнение (1) имеет единственное решение x = — b /a;
  2. Если a = 0, b ≠ 0, то множество решений уравнения (1) пусто;
  3. Если a = 0, b = 0, то любое действительное число является решением уравнения (1).

Таким образом, приведенные выше линейные уравнения решаются следующим образом:

a) x = — 6 /2, то есть x = -3;
b) x = 2;
c) любое действительное число является решением данного уравнения;
d) уравнение не имеет решений;
e) x = 0.

Замечание 2. Уравнение (ax + b)(cx + d) = 0 где a, b, c, d О R, сводится к совокупности линейных уравнений

ax + b = 0,
cx + d = 0.

Пример 1. Решить уравнения

a) ,c) —x + 2 = 2 — x,
b) 2x + 1 = 2x + 3,d) (2x + 4)(3x — 1) = 0.

Решение. a) x = 6.

b) 2x + 1 = 2x + 3 Ы 2x — 2x = 3 — 1 Ы 0·x = 2 откуда следует, что уравнение не имеет решений.

c) —x + 2 = 2 — x Ы —x + x = 2 — 2 Ы 0·x = 0, следовательно, любое действительное число является решением уравнения.

d) (2x + 4)(3x — 1) = 0 Ы
2x + 4 = 0,
3x — 1 = 0,
Ы
x1 = -2,
x2 = 1 /3.

В дальнейшем будут рассматриваться линейные уравнения с параметрами. Под параметром понимается (смотрите тему Уравнения с параметром) фиксированное (но неизвестное) число. Как правило, параметр обозначается первыми буквами латинского алфавита.

Пример 2. Решить уравнения

a) ax = 1;e)
b) a 2 x — 1 = x + a;f)
c) ax + b = cx + d;g)
d) ;

Решение. a) Применяя утверждение 1, получим:

при a ≠ 0 уравнение имеет единственное решение, x = 1 /a;

при a = 0 уравнение примет вид 0·x = 1 и, следовательно, оно не имеет решений.

Ответ: если a О R\<0>, то x = 1 /a; если a = 0, то уравнение не имеет решений.

b) После элементарных преобразований получим: a 2 x — 1 = x + a Ы a 2 xx = a + 1 Ы x(a 2 — 1) = a + 1.

откуда, применяя утверждение 1, получим:

  1. если a 2 -1 ≠ 0, то есть a ≠ ± 1, то или
  2. если a = 1, то уравнение примет вид 0·x = 2 и, следовательно, не имеет решений;
  3. если a = -1, то уравнение примет вид 0·x = 0, и, следовательно, любое действительное число является решением этого уравнения.

c) Перепишем уравнение следующим образом (ac)x = db, откуда следует:

  1. если ac ≠ 0, то есть ac, то уравнение имеет единственное решение
  2. если a = c и db ≠ 0, то уравнение примет вид 0·x = db ( ≠ 0) и, следовательно, оно не имеет решений;
  3. если a = c и d = b, то уравнение примет вид 0·x = 0, и, следовательно, множество его решений есть R

d) Область допустимых значений (ОДЗ) уравнения есть x ≠ 4. В ОДЗ уравнение решается следующим образом:

Ы
x-2a = 0,
x ≠ 4
Ы
x = 2a,
x ≠ 4.

Таким образом, если 2a ≠ 4, то есть a ≠ 2, то уравнение имеет единственное решение x = 2a, а если a = 2, то уравнение не имеет решений.

  • если a ≠ -1, a ≠ 2, — a /2 ≠ -1, — a /2 ≠ 2, то есть a О R\<-1;2;-4>, то уравнение имеет два решения x1 = a и x2 = — a /2 (если a = 0, решения совпадают);
  • если a = -1, то уравнение имеет единственное решение x = 1 /2;
  • если a = 2, то уравнение не имеет решений;
  • если a = -4, то уравнение имеет единственное решение x = -4.
  • f) Если a = 0 или b = 0, то уравнение не имеет смысла. Пусть a·b ≠ 0. Тогда уравнение равносильно следующему x(b + a) = abc откуда следует:

    1. если b + a ≠ 0, то есть a ≠ —b, то уравнение имеет единственное решение
    2. если a = —b и c ≠ 0, то уравнение не имеет решений.
    3. если a = —b и c = 0, то любое действительное число есть решение данного уравнения.

    g) ОДЗ уравнения определяется из системы

    5xa ≠ 0,
    ax — 1 ≠ 0,

    откуда x ≠ a /5 и, если a ≠ 0, x ≠ 1 /a. Если a = 0, то уравнение примет вид или -2 = 15x,

    откуда , и, поскольку следует, что если a = 0 то уравнение имеет решение .

    Пусть a ≠ 0. Тогда в ОДЗ уравнение примет вид 2(ax — 1) = 3(5xa), откуда (2a — 15)x = 2 — 3a и, следовательно,

    1. если 2a — 15 ≠ 0, то есть то получим ;
    2. если 2a-15 = 0, то есть то уравнение не имеет решений.

    Таким образом для нужно проверить условие x ≠ a /5 и x ≠ 1 /a: или (2a — 15)a ≠ 5(2 — 3a) откуда 2a 2 ≠ 10, или Таким образом, для уравнение не имеет решений.

    В случае второго ограничения получим или a(2 — 3a) ≠ (2a — 15), откуда 3a 2 = 15, то есть a 2 ≠ 5 (уже исследованный случай).

    Таким образом, если уравнение не имеет решений, а если то уравнение имеет единственное решение (заметим, что решение полученное в случае a = 0 содержится в приведенном выше результате).

    Пример 3. Решить уравнения

    a) |xa| = 2;c) |xa| + |x — 2a| = a;
    b) |x| + |xa| = 0;d) |x — 1| + |x — 2| = a.

    Решение. a) Используя свойство модуля, получим:

    |xa| = 2 Ы
    xa = 2,
    xa = -2,
    Ы
    x = a + 2,
    x = a — 2.

    Таким образом, для любого действительного a уравнение имеет два различных решения, x1 = a + 2 и x2 = a — 2.

    b) Левая часть уравнения принимает неотрицательные значения (как сумма двух неотрицательных слагаемых), а правая часть равна нулю. Следовательно,

    x = 0,
    xa = 0,
    или
    x = 0,
    x = a.

    Таким образом, если a = 0, то система (а, следовательно, и уравнение) имеет единственное решение x = 0, а если a ≠ 0, то система (и исходное уравнение) решений не имеет.

    c) Так как | f(x)| = |-f(x)| уравнение можно переписать следующим образом |xa| + |2ax| = a.

    Очевидно, что если a 0. Тогда a = |a| = |(2ax) + (xa)|, и уравнение примет вид |xa| + |2ax| = |(2ax) + (xa)|. Это уравнение равносильно (см. свойства модуля) неравенству (2ax)(xa) ≥ 0 откуда, учитывая, что 0 О [a;2a].

    если a 0, то уравнение имеет бесконечное число решений — любое число ax ≤ 2a.

    d) Очевидно, что уравнение имеет решения только при a > 0. Рассмотрим три случая:

    1. Пусть xx + 1 — x + 2 = a или -2x = a — 3 откуда . Поскольку xоткуда a > 1. Таким образом, если a > 1, то ;
    2. Пусть x О [1;2]. Тогда |x — 1| = x — 1, |x — 2| = -(x-2) и уравнение примет вид x — 1 — x + 2 = a, 0·x = a — 1. Используя утверждение 1, получим:

    если a = 1, то любое действительное число из отрезка [1;2] есть решение исходного уравнения;

    если a ≠ 1, то решений нет.
    Пусть x > 2. Тогда |x — 1| = x — 1, |x — 2| = x — 2 и уравнение примет вид x — 1 + x — 2 = a откуда Поскольку x > 2, то то есть a > 1.

    если a > 1, то уравнение имеет два различных решения и

    если a = 1, то любое число отрезка [1;2] есть решение уравнения;

    если a Линейные неравенства

    ax + b > 0, ax + b ≥ 0, ax + b О R, x — переменная, называются неравенствами первой степени (линейными неравенствами).

    Поскольку все неравенства (2) решаются аналогично, приведем решение лишь первого из них: ax + b > 0. Рассмотрим следующие случаи:

    1. a > 0, тогда ax + b > 0 Ы ax > —b Ы x > — b /a и, следовательно, множество решений неравенства ax + b > 0 (a > 0) есть (- b /a;+ Ґ );
    2. aax + b > 0 Ы ax > —b Ы x b /a и, следовательно, множество решений неравенства ax + b > 0 (a Ґ ;- b /a);
    3. a = 0, тогда неравенство примет вид 0·x + b > 0 и для b > 0 любое действительное число есть решение неравенства, а при b ≤ 0 неравенство не имеет решений.

    Рассмотрим несколько примеров.

    Пример 1. Решить неравенства

    a) 3x + 6 > 0;c) 2(x + 1) + x

    Решение. a) 3x + 6 > 0 Ы 3x > -6 Ы x > -2, и, следовательно, множество решений исходного неравенства есть (-2;+ Ґ ).

    b) -2x + 3 ≥ 0 Ы -2x ≥ -3 Ы x ≤ 3 /2, то есть множеством решений исходного неравенства является (- Ґ ; 3 /2].

    c) После элементарных преобразований получим линейное неравенство 2(x + 1) + x Ы 2x + 2 + x Ы 0·x + 1 Так как 1 3x + 2 ≥ 3(x — 1) + 1 Ы 3x + 2 ≥ 3x — 3 + 1 Ы 0·x + 4 ≥ 0, откуда следует, что любое действительное число является решением исходного неравенства.

    Пример 2. Решить неравенства

    a) ax ≤ 1;
    b) |x — 2| > -(a — 1) 2 ;
    c) 3(4ax) ax + 3;
    e)
    f) ax + b > cx + d;
    g)

    Решение. a) В зависимости от знака a рассмотрим три случая:

    1. если a > 0, то x ≤ 1 /a;
    2. если a 1 /a;
    3. если a = 0, то неравенство примет вид 0·x ≤ 1 и, следовательно, любое действительное число является решением исходного неравенства.

    Таким образом, если a > 0, то x О (- Ґ ; 1 /a], если a О [ 1 /a;+ Ґ ), и если a = 0, то x О R.

    b) Заметим, что |x — 2| ≥ 0 для любого действительного x и -(a-1) 2 ≤ 0 для любого значения параметра a. Следовательно, если a = 1, то любое x действительное число, отличное от 2, является решением неравенства, а если a ≠ 1, то любое действительное число является решением неравенства. Ответ: если a = 1, то x О R\<2>, а если a О R\<1>, то x О R.

    c) После элементарных преобразований получим 3(4ax) Ы 12a — 3x Ы 12a — 3 Ы x(2a + 3) > 3(4a — 1).

    Далее рассмотрим три случая:

    1. если 2a + 3 > 0, то есть a > — 3 /2, то
    2. если 2a + 3 3 /2, то
    3. если 2a + 3 = 0, то есть a = — 3 /2, то неравенство примет вид 0·x > -21 и, так как 0 > -21 — истинное числовое неравенство, следует, что любое действительное число является решением исходного неравенства.

    если то

    если то

    Далее рассмотрим следующие случаи:

    1. если a(b — 1) > 0, то есть a > 0 и b > 1, или a
    2. если a(b — 1) 0 и b 1, то
    3. если a = 0, b ≠ 1 то неравенство примет вид 0·x > 3 — b и для b > 3 любое число является решением, а если b О (- Ґ ;1) И (1;3], то множество решений неравенства пусто.
    4. если a ≠ 0, b = 1, то неравенство примет вид 0·x > 2 и, очевидно, что оно решений не имеет.

    если a > 0 и b > 1, или a 0 и b 1, то

    если a = 0 и b О (3;+ Ґ ), то x О R;

    если a = 0 и b О (- Ґ ;1) И (1;3) или a ≠ 0 и b = 1, то неравенство не имеет решений.

    e) Заметим, что a ≠ ± 1, (в противном случае неравенство не имеет смысла). Неравенство переписывается следующим образом

    Далее рассмотрим следующие случаи:

    1. пусть a О (- Ґ ;-1) И (1;+ Ґ ), тогда (a — 1)(a + 1) > 0 и, следовательно, исходное неравенство равносильно следующему x(2 — 3a) + 3 — a ≤ 0, или x(2 — 3a) ≤ a — 3, откуда для a > 1

    Последнее неравенство решается следующим образом:

    если a О (-1; 2 /3), то

    если a О ( 2 /3,1), то .

    Таким образом, исходное неравенство

    при a О (- Ґ ;-1) И ( 2 /3;1) имеет решения

    при a О (-1; 2 /3) И (1;+ Ґ ) имеет решения

    при a = 2 /3, любое действительное число является решением исходного неравенства.

    f) Исходное неравенство равносильно следующему (ac)x > db откуда следует, что

    1. если a >c, то ac > 0 и, следовательно,
    2. если a О R.

    g) Заметим, что a ≠ 0 и b ≠ 0. Приведя к общему знаменателю, получим

    2(b 2 — a 2 ) — x(ba) 2 > 0,
    ab > 0,
    2(b 2 — a 2 ) — x(ba) 2
    Ы
    x(ba) 2 2 — a 2 ),
    ab 2 > 2(b 2 — a 2 ),
    ab Ы
    ab > 0,
    ab,
    x О Ж ,
    a = b,
    ab

    Таким образом, если a и b одиннакогого знака (ab > 0) и ab, то множество решений неравенства есть если a и b — противоположных знаков (ab

    a) |x + a| + |x — 2a| 2;
    b) |x + a|

    Решение. a) Заметим, что при a ≤ 0 неравенство решений не имеет. Пусть a > 0. Рассмотрим три случая:

    1. пусть x О (- Ґ ;-a], тогда |x + a| = —xa и |x — 2a| = 2ax и неравенство примет вид —xa + 2ax — 3 /2a, поскольку a > 0, пересечением множеств (- Ґ ;-a] и (а, следовательно, и множеством решений неравенства) явяется множество
    2. пусть x О (-a;2a], тогда |x + a| = x + a, и |x — 2a| = 2ax, и неравенство примет вид x + a + 2ax и, поскольку a > 0, любое число из интервала (-a;2a] есть решение неравенства;
    3. пусть x О (2a;+ Ґ ), тогда |x + a| = x + a и |x — 2a| = x — 2a, и неравенство примет вид x + a + x — 2a 5 /2a. Учитывая условие x > 2a, получим x О (2a; 5 /2a).

    Таким образом, если a ≤ 0, то неравенство не имеет решений, а если a > 0, то множество решений неравенства есть (- 3 /2a;-a] И (-a;2a] И (2a; 5 /2a) или (- 3 /2a; 5 /2a).

    b) Заметим, что неравенство может иметь лишь положительные решения. Для x > 0 неравенство переписывается |x + a| |x + a| Ы |x + a| Ы (x + a + ax)(x + aax) Ы

    Ы [(a + 1)x + a][(1 — a)x + a] Ы
    (a + 1)x + a > 0,
    (1 — a)x + a Ы
    (a + 1)x > —a,
    (1 — a)xa.

    Если a > 1, тогда a — 1 > 0 и a + 1 > 0, и первая система совокупности примет вид

    откуда (учитывая, что x > 0) получим а вторая система совокупности примет вид и, так как a > 1 влечет а x > 0, система не имеет решений.

    Если a = 1, то первая система совокупности не имеет решений, а из второй получим x 1 /2, и, так как x > 0, то и в этом случае исходное неравенство не имеет решений.

    Если -1 0 и 1 — a > 0, и первая система совокупности примет вид или откуда, заметив, что получим, что первая система совокупности несовместна. Из второй системы получим и, учитывая, что x > 0, получим откуда a О [0;1), то неравенство не имеет решений, а если a О (-1;0), то множество решений неравенства есть

    Если a = -1, то первая система совокупности несовместна, а из второй получим x > 1 /2.

    Если a 0, и из первой системы следует Так как a 0, то в этом случае исходное неравенство не имеет решений. Вторая система совокупности примет вид и, поскольку x > 0, получим

    если a О (- Ґ ;-1) И (1;+ Ґ ), то

    если a О [0;1], то неравенство не имеет решений;


    источники:

    http://infourok.ru/uchebnoe_posobie_uravneniya_i_neravenstva_s_parametrami-415388.htm

    http://www.math.md/school/praktikum/paramr/paramr.html