Линейные уравнения неравенства системы с одной переменной

Как решать системы линейных неравенств с одной переменной

Линейные неравенства: свойства и правила

Линейные неравенства — неравенства, записанные в виде:

В перечисленных выражениях a и b являются какими-либо числами, а отлично от нуля, х играет роль неизвестной переменной.

Линейные неравенства с одной переменной:

Заметим, что в приведенных примерах, которые можно встретить в контрольной работе, отсутствуют неизвестные, возведенные в квадрат, куб и другие степени. Также выражения не содержат операции деления на х, и переменная не расположена под знаком корня.

Система неравенств с одной переменной представляет собой совокупность, в которую включены несколько неравенств, содержащие одинаковую переменную.

Решением системы неравенств с одной переменной является значение, которое принимает переменная, и каждое из неравенств становится верным.

Решить систему неравенств — определить все решения данной системы, либо доказать их отсутствие.

При решении самостоятельно или на уроке задач с неравенствами, содержащими одну переменную, полезно знать свойства числовых неравенств:

  1. При a > b и b > c получаем, что a > c. Например, 8 > 4 и 4 > 3, что означает 8 > 3.
  2. При a > b получим, что a + const > b + const. Здесь const может обладать произвольным числовым значением. Например, x — 3 > 0, поэтому x — 3 + 8 > 0 + 8.
  3. Когда a > b и m > 0, получим, что am > bm. В том случае, если a > b и m , > на b на -1, результатом станет: -a b и c > d получим, что a + c > b + d. Например, 8 > 4 и 3 > 2, тогда 8 + 3 > 4 + 2.
  4. При значениях a, b, c, d больше нуля и a > b, c > d получим, что ac > bd. Например, 8 > 4 и 3 > 2, тогда 8 × 3 > 4 × 2 .

Правило 1

Какой-либо член неравенства допускается перенести в другую часть неравенства при условии изменения знака на противоположный.

В качестве примера применения данного правила можно разобрать действие с неравенством:

3 x — 4 > 7 ⇒ 3 x > 7 + 4 ⇒ 3 x > 11

Заметим, что выражение 3 x — 4 > 7 является равносильным 3 x > 11 .

12 + 4 x ≤ 7 — 3 x

Выполним перенос слагаемых, содержащих переменную, влево. Свободные члены оставим в правой части:

12 + 4 x ≤ 7 — 3 x

12 + 4 x ≤ 7 — 3 x

4 x + 3 x ≤ 7 — 12

Все части неравенства допустимо умножать или делить на одинаковое число, большее нуля. Результатом подобных действий является неравенство, которое равносильно исходному неравенству.

С помощью записанного правила выполним деление неравенства на 3:

Знак неравенства не изменился по той причине, что деление осуществлялось на число, большее нуля.

Попробуем поделить обе части неравенства, записанного ниже, на число 7:

Здесь знак неравенства остается без изменений, так как общий делитель является положительным числом.

При умножении или делении обеих частей неравенства на число, меньшее нуля, знак неравенства меняется на противоположный: > на знак , ≥ на знак ≤ , и наоборот.

Рассмотрим пример неравенства:

Разделим неравенство на число -4:

Заметим, что в процессе деления был изменен знак неравенства на противоположный.

Попробуем разделить это неравенство на число -7, записав результат с противоположным знаком:

Алгоритм решения линейных неравенств графическим способом

Линейные неравенства могут быть записаны в виде систем. Тогда решать подобные примеры следует, руководствуясь следующим алгоритмом:

  • найти решения для каждого неравенства;
  • перенести найденные значения на координатную прямую;
  • определить пересечение решений неравенств;
  • записать ответ как числовой промежуток.

Определение 5

Несовместимая система представляет собой систему, у которой нет решений.

Системы линейных неравенств с одной переменной имеют вид:

a x + b 0 ; c x + d 0 .

Рассмотрим решение системы неравенств:

2 x — 3 ≥ 0 — 3 x + 11 > 0 ⇔ 2 x ≥ 3 — 3 x > — 11 ⇔ x ≥ 3 2 x 11 3

Перенесем точечные множества на координатную прямую и получим ответ:

Ответ: x ∈ [ 3 2 ; 11 3 ) .

Многие неравенства можно решать графическим методом. Смысл такого способа поиска решений заключается в определении промежутков для последующего их изображения на графике.

Метод интервалов

Рассмотрим неравенство с переменной:

А ( х ) > 0 ( А ( х ) 0 )

Разложим записанное неравенство на линейные множители:

A ( x ) = ( k 1 x + b 1 ) ( k 2 x + b 2 ) … ( k n x + b n )

В таком случае для решения неравенства допускается применить метод интервалов. В основе данного способа свойства функции. Рассмотрим его применение на примере неравенства:

А ( х ) > 0 ( А ( х ) 0 )

где A ( x ) = ( k 1 x + b 1 ) ( k 2 x + b 2 ) … ( k n x + b n )

Определим корни уравнения А ( х ) = 0 :

Отметим корни на координатной прямой:

Заметим, что знак неравенства будет изменяться при переходе через корни:

Определить знак на каждом интервале можно с помощью выбора некого значения х = х0. Это значение следует подставить в левую часть неравенства, чтобы определить знак. Далее нужно отметить промежутки, в рамках которых неравенство выполняется.

Использование равносильных преобразований

Решить неравенство вида a x + b 0 ( ≤ , > , ≥ ) можно с помощью равносильных преобразований. Данный способ заключается в определенной последовательности действий. Рассмотрим случай, когда коэффициент a отличен от нуля:

  1. Перенос b вправо с изменением знака на противоположный.
  2. Запись равносильного неравенства: a x − b .
  3. Деление всех частей неравенства на число, отличное от нуля.

Важно, что при a больше нуля, знак сохраняется без изменений. Когда a имеет отрицательное значение, следует изменить знак на противоположный.

Здесь а = 4 и b = 16. Коэффициент при неизвестном отличен от нуля, что позволяет использовать в решении рассмотренный алгоритм.

Выполним перенос 16 вправо и изменим его знак на противоположный:

Разделим неравенство на 4:

4 x ÷ 4 ≤ − 16 ÷ 4 ⇒ x ≤ − 4

Неравенство x ≤ − 4 является равносильным. Таким образом, решением исходного неравенства станет какое-либо действительное число, которое меньше или равно -4.

Ответ: x ≤ − 4 , и л и ( − ∞ , − 4 ]

В процессе решения задач можно встретить неравенство вида a x + b 0 , где a равно нулю. В таком случае:

Тогда следует определить, является ли верным полученное неравенство:

Возможно два варианта:

Заметим, что х может иметь любое значение, так как:

Примеры решения заданий

Требуется решить неравенство:

З х — 5 ≥ 7 х — 15

Воспользуемся рассмотренным ранее правилом, чтобы перенести одночлен 7х влево. Свободный член -5 следует переместить вправо. В процессе требуется поменять знаки у этих членов. В результате:

З х — 7 х ≥ — 15 + 5

Выполним деление неравенства на -4. Знак выражения при этом необходимо изменить на противоположный. Таким образом:

В ответ нужно записать определенный промежуток координатной прямой, то есть ( — ∞ ; 2 , 5 ] .

Требуется найти решения неравенства:

3 x + 2 > 2 ( x + 3 ) + x

Избавимся от скобок справа:

3 x + 2 > 2 x + 6 + x

3 x — 2 x — x > 6 — 2

Полученное неравенство не является верным. Это означает, что начальное неравенство не имеет решений.

Ответ: решения отсутствуют.

Дано неравенство, которое нужно решить:

2 ( x — 1 ) + 3 > 2 x – 5

Избавимся от скобок слева:

2 x — 2 + 3 > 2 x – 5

2 x — 2 x > 2 — 5 — 3

Полученное в результате неравенство является верным. Поэтому начальное неравенство также верно при любом значении х.

Решить систему линейных неравенств с одной переменной:

5 x + 6 ≤ 1 2 x + 1 ≥ 3

Следует решать каждое неравенство отдельно:

Используя координатную прямую, объединим полученные решения:

Системы линейных неравенств с одной переменной

Примеры решения систем линейных неравенств с одной переменной

Несколько линейных неравенств, удовлетворяющих одним и тем же решениям, образуют систему.

Рассмотрим простейший пример. Система состоит из двух неравенств, которые уже решены.

Решениями первого неравенства являются все числа, которые больше 4. Решениями второго неравенства являются все числа, которые меньше 9.

Изобразим множество решений каждого неравенства на координатной прямой и запишем ответы к ним в виде числовых промежутков:

Но дело в том, что неравенства x > 4 и x соединены знаком системы, а значит зависимы друг от друга. Им не дозволяется раскидываться решениями как им захочется. Наша задача указать решения, которые одновременно будут удовлетворять и первому неравенству и второму.

Говоря по-простому, нужно указать числа, которые больше 4, но меньше 9. Очевидно, что речь идет о числах, находящихся в промежутке от 4 до 9.

Значит решениями системы являются числа от 4 до 9. Границы 4 и 9 не включаются во множество решений системы, поскольку неравенства x > 4 и x строгие. Ответ можно записать в виде числового промежутка:

Также, нужно изобразить множество решений системы на координатной прямой.

Для системы линейных неравенств решение на координатной прямой изображают так:

Сначала указывают границы обоих неравенств:

На верхней области отмечают множество решений первого неравенства x > 4

На нижней области отмечают множество решений второго неравенства x (4; 9) , например, число 8

Видим, что решение 8 удовлетворяет обоим неравенствам.

Исходя из рассмотренного примера, можно сформировать правило для решения системы линейных неравенств:

Чтобы решить систему линейных неравенств, нужно по отдельности решить каждое неравенство, и указать в виде числового промежутка множество решений, удовлетворяющих каждому неравенству.

Пример 2. Решить систему неравенств

Решениями первого неравенства являются все числа, которые больше 17. Решениями второго неравенства являются все числа, которые больше 12.

Решениями же обоих неравенств являются все числа, которые больше 17.

Изобразим множество решений системы на координатной прямой и запишем ответ в виде числового промежутка.

Для начала отметим на координатной прямой границы обоих неравенств:

На верхней области отметим множество решений первого неравенства x > 17

На нижней области отметим множество решений второго неравенства x > 12

Нас интересует область, которая отмечена штрихами с обеих сторон. В этой области и располагаются решения системы . Видно, что эта область располагается в промежутке от 17 до плюс бесконечности. Запишем ответ в виде числового промежутка:

Пример 3. Решить систему неравенств

Решим каждое неравенство по отдельности. Делать это можно внутри системы. Если испытываете затруднения при решении каждого неравенства, обязательно изучите предыдущий урок

Получили систему . На этом решение завершается. Осталось изобразить множество решений системы на координатной прямой и записать ответ в виде числового промежутка.

Как и в прошлом примере, сначала нужно отметить границы обоих неравенств, затем отметить множество решений каждого неравенства ( x > 6 и x > 3 ). Область координатной прямой, отмеченная с обеих сторон, будет промежутком, в котором располагается множество решений системы

Пример 4. Решить систему неравенств

Решим каждое неравенство по отдельности:

Изобразим множество решений системы на координатной прямой и запишем ответ в виде числового промежутка:

Пример 5. Решить неравенство

Решим каждое неравенство по отдельности:

Изобразим множество решений системы на координатной прямой и запишем ответ в виде числового промежутка:

Когда решений нет

Если неравенства, входящие в систему, не имеют общих решений, то говорят, что система не имеет решений.

Пример 1. Решить неравенство

Решим каждое неравенство по отдельности:

Решениями первого неравенства являются все числа, которые больше 7, включая число 7. Решениями второго неравенства являются все числа, которые меньше −3, включая число −3.

Видим, что у данных неравенств нет общих решений. Увидеть это наглядно позволит координатная прямая. Отметим на ней множество решений каждого неравенства:

На координатной прямой нет областей, которые отмечены штрихами с обеих сторон. Это говорит о том, что неравенства y ≥ 7 и y ≤ −3 не имеют общих решений. Значит не имеет решений система

А если не имеет решений приведённая равносильная система , то не имеет решений и исходная система

Ответ: решений нет.

Пример 2. Решить систему неравенств

Решим каждое неравенство по отдельности:

Изобразим множество решений неравенств x ≤ −3 и x ≥ 9 на координатной прямой:

Видим, что на координатной прямой нет областей, которые отмечены штрихами с обеих сторон. Значит неравенства x ≤ −3 и x ≥ 9 не имеют общих решений. А значит не имеет решений система

А если не имеет решений приведённая равносильная система , то не имеет решений и исходная система

Ответ: решений нет.

Пример 3. Решить систему неравенств

Решим каждое неравенство по отдельности:

Получили неравенства 0 и a > 5 . Первое неравенство не является верным и не имеет решений. Решением второго неравенство a > 5 являются все числа, которые больше 5. Но поскольку первое неравенство не будет верным ни при каком a , то можно сделать вывод, что у неравенств нет общих решений. А значит не имеет решений исходная система

Линейные неравенства, примеры, решения

После получения начальных сведений о неравенствах с переменными, переходим к вопросу их решения. Разберем решение линейных неравенств с одной переменной и все методы для их разрешения с алгоритмами и примерами. Будут рассмотрены только линейные уравнения с одной переменной.

Что такое линейное неравенство?

В начале необходимо определить линейное уравнение и выяснить его стандартный вид и чем оно будет отличаться от других. Из школьного курса имеем, что у неравенств нет принципиального различия, поэтому необходимо использовать несколько определений.

Линейное неравенство с одной переменной x – это неравенство вида a · x + b > 0 , когда вместо > используется любой знак неравенства , ≤ , ≥ , а и b являются действительными числами, где a ≠ 0 .

Неравенства a · x c или a · x > c , с x являющимся переменной, а a и c некоторыми числами, называют линейными неравенствами с одной переменной.

Так как ничего не сказано за то, может ли коэффициент быть равным 0 , тогда строгое неравенство вида 0 · x > c и 0 · x c может быть записано в виде нестрогого, а именно, a · x ≤ c , a · x ≥ c . Такое уравнение считается линейным.

Их различия заключаются в:

  • форме записи a · x + b > 0 в первом, и a · x > c – во втором;
  • допустимости равенства нулю коэффициента a , a ≠ 0 — в первом, и a = 0 — во втором.

Считается, что неравенства a · x + b > 0 и a · x > c равносильные, потому как получены переносом слагаемого из одной части в другую. Решение неравенства 0 · x + 5 > 0 приведет к тому, что его необходимо будет решить, причем случай а = 0 не подойдет.

Считается, что линейными неравенствами в одной переменной x считаются неравенства вида a · x + b 0 , a · x + b > 0 , a · x + b ≤ 0 и a · x + b ≥ 0 , где a и b являются действительными числами. Вместо x может быть обычное число.

Исходя из правила, имеем, что 4 · x − 1 > 0 , 0 · z + 2 , 3 ≤ 0 , — 2 3 · x — 2 0 являются примерами линейных неравенств. А неравенства такого плана, как 5 · x > 7 , − 0 , 5 · y ≤ − 1 , 2 называют сводящимися к линейному.

Как решить линейное неравенство

Основным способом решения таких неравенств сводится к равносильным преобразованиям для того, чтобы найти элементарные неравенства x p ( ≤ , > , ≥ ) , p являющееся некоторым числом, при a ≠ 0 , а вида a p ( ≤ , > , ≥ ) при а = 0 .

Для решения неравенства с одной переменной, можно применять метода интервалов или изображать графически. Любой из них можно применять обособленно.

Используя равносильные преобразования

Чтобы решить линейное неравенство вида a · x + b 0 ( ≤ , > , ≥ ) , необходимо применить равносильные преобразования неравенства. Коэффициент может быть равен или не равен нулю. Рассмотрим оба случая. Для выяснения необходимо придерживаться схемы, состоящей из 3 пунктов: суть процесса, алгоритм, само решение.

Алгоритм решение линейного неравенства a · x + b 0 ( ≤ , > , ≥ ) при a ≠ 0

  • число b будет перенесено в правую часть неравенства с противоположным знаком, что позволит прийти к равносильному a · x − b ( ≤ , > , ≥ ) ;
  • будет производиться деление обеих частей неравенства на число не равное 0 . Причем , когда a является положительным, то знак остается, когда a – отрицательное, меняется на противоположный.

Рассмотрим применение данного алгоритма на решении примеров.

Решить неравенство вида 3 · x + 12 ≤ 0 .

Данное линейное неравенство имеет a = 3 и b = 12 . Значит, коэффициент a при x не равен нулю. Применим выше сказанные алгоритмы, решим.

Необходимо перенести слагаемое 12 в другую часть неравенства с изменением знака перед ним. Тогда получаем неравенство вида 3 · x ≤ − 12 . Необходимо произвести деление обеих частей на 3 . Знак не поменяется, так как 3 является положительным числом. Получаем, что ( 3 · x ) : 3 ≤ ( − 12 ) : 3 , что даст результат x ≤ − 4 .

Неравенство вида x ≤ − 4 является равносильным. То есть решение для 3 · x + 12 ≤ 0 – это любое действительное число, которое меньше или равно 4 . Ответ записывается в виде неравенства x ≤ − 4 , или числового промежутка вида ( − ∞ , − 4 ] .

Весь выше прописанный алгоритм записывается так:

3 · x + 12 ≤ 0 ; 3 · x ≤ − 12 ; x ≤ − 4 .

Ответ: x ≤ − 4 или ( − ∞ , − 4 ] .

Указать все имеющиеся решения неравенства − 2 , 7 · z > 0 .

Из условия видим, что коэффициент a при z равняется — 2 , 7 , а b в явном виде отсутствует или равняется нулю. Первый шаг алгоритма можно не использовать, а сразу переходить ко второму.

Производим деление обеих частей уравнения на число — 2 , 7 . Так как число отрицательное, необходимо поменять знак неравенства на противоположный. То есть получаем, что ( − 2 , 7 · z ) : ( − 2 , 7 ) 0 : ( − 2 , 7 ) , и дальше z 0 .

Весь алгоритм запишем в краткой форме:

− 2 , 7 · z > 0 ; z 0 .

Ответ: z 0 или ( − ∞ , 0 ) .

Решить неравенство — 5 · x — 15 22 ≤ 0 .

По условию видим, что необходимо решить неравенство с коэффициентом a при переменной x , которое равняется — 5 , с коэффициентом b , которому соответствует дробь — 15 22 . Решать неравенство необходимо, следуя алгоритму, то есть: перенести — 15 22 в другую часть с противоположным знаком, разделить обе части на — 5 , изменить знак неравенства:

— 5 · x ≤ 15 22 ; — 5 · x : — 5 ≥ 15 22 : — 5 x ≥ — 3 22

При последнем переходе для правой части используется правило деления числе с разными знаками 15 22 : — 5 = — 15 22 : 5 , после чего выполняем деление обыкновенной дроби на натурально число — 15 22 : 5 = — 15 22 · 1 5 = — 15 · 1 22 · 5 = — 3 22 .

Ответ: x ≥ — 3 22 и [ — 3 22 + ∞ ) .

Рассмотрим случай, когда а = 0 . Линейное выражение вида a · x + b 0 является неравенством 0 · x + b 0 , где на рассмотрение берется неравенство вида b 0 , после чего выясняется, оно верное или нет.

Все основывается на определении решения неравенства. При любом значении x получаем числовое неравенство вида b 0 , потому что при подстановке любого t вместо переменной x , тогда получаем 0 · t + b 0 , где b 0 . В случае, если оно верно, то для его решения подходит любое значение. Когда b 0 неверно, тогда линейное уравнение не имеет решений, потому как не имеется ни одного значения переменной, которое привело бы верному числовому равенству.

Все суждения рассмотрим в виде алгоритма решения линейных неравенств 0 · x + b 0 ( ≤ , > , ≥ ) :

Числовое неравенство вида b 0 ( ≤ , > , ≥ ) верно, тогда исходное неравенство имеет решение при любом значении, а неверно тогда, когда исходное неравенство не имеет решений.

Решить неравенство 0 · x + 7 > 0 .

Данное линейное неравенство 0 · x + 7 > 0 может принимать любое значение x . Тогда получим неравенство вида 7 > 0 . Последнее неравенство считается верным, значит любое число может быть его решением.

Найти решение неравенства 0 · x − 12 , 7 ≥ 0 .

При подстановке переменной x любого числа получим, что неравенство получит вид − 12 , 7 ≥ 0 . Оно является неверным. То есть 0 · x − 12 , 7 ≥ 0 не имеет решений.

Ответ: решений нет.

Рассмотрим решение линейных неравенств , где оба коэффициента равняется нулю.

Определить не имеющее решение неравенство из 0 · x + 0 > 0 и 0 · x + 0 ≥ 0 .

При подстановке любого числа вместо x получим два неравенства вида 0 > 0 и 0 ≥ 0 . Первое является неверным. Значит, 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет бесконечное количество решений, то есть любое число.

Ответ: неравенство 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет решения.

Методом интервалов

Данный метод рассматривается в школьном курсе математики. Метод интервалов способен разрешать различные виды неравенств, также и линейные.

Метод интервалов применяется для линейных неравенств при значении коэффициента x не равному 0 . Иначе придется вычислять при помощи другого метода.

Метод интервалов – это:

  • введение функции y = a · x + b ;
  • поиск нулей для разбивания области определения на промежутки;
  • определение знаков для понятия их на промежутках.

Соберем алгоритм для решения линейных уравнений a · x + b 0 ( ≤ , > , ≥ ) при a ≠ 0 с помощью метода интервалов:

  • нахождение нулей функции y = a · x + b , чтобы решить уравнение вида a · x + b = 0 . Если a ≠ 0 , тогда решением будет единственный корень, который примет обозначение х 0 ;
  • построение координатной прямой с изображением точки с координатой х 0 , при строгом неравенстве точка обозначается выколотой, при нестрогом – закрашенной;
  • определение знаков функции y = a · x + b на промежутках, для этого необходимо находить значения функции в точках на промежутке;
  • решение неравенства со знаками > или ≥ на координатной прямой добавляется штриховка над положительным промежутком, или ≤ над отрицательным промежутком.

Рассмотрим несколько примеров решения линейного неравенства при помощи метода интервалов.

Решить неравенство − 3 · x + 12 > 0 .

Из алгоритма следует, что для начала нужно найти корень уравнения − 3 · x + 12 = 0 . Получаем, что − 3 · x = − 12 , x = 4 . Необходимо изобразить координатную прямую, где отмечаем точку 4 . Она будет выколотой, так как неравенство является строгим. Рассмотрим чертеж, приведенный ниже.

Нужно определить знаки на промежутках. Чтобы определить его на промежутке ( − ∞ , 4 ) , необходимо произвести вычисление функции y = − 3 · x + 12 при х = 3 . Отсюда получим, что − 3 · 3 + 12 = 3 > 0 . Знак на промежутке является положительным.

Определяем знак из промежутка ( 4 , + ∞ ) , тогда подставляем значение х = 5 . Имеем, что − 3 · 5 + 12 = − 3 0 . Знак на промежутке является отрицательным. Изобразим на числовой прямой, приведенной ниже.

Мы выполняем решение неравенства со знаком > , причем штриховка выполняется над положительным промежутком. Рассмотрим чертеж, приведенный ниже.

Из чертежа видно, что искомое решение имеет вид ( − ∞ , 4 ) или x 4 .

Ответ: ( − ∞ , 4 ) или x 4 .

Графическим способом

Чтобы понять, как изображать графически, необходимо рассмотреть на примере 4 линейных неравенства: 0 , 5 · x − 1 0 , 0 , 5 · x − 1 ≤ 0 , 0 , 5 · x − 1 > 0 и 0 , 5 · x − 1 ≥ 0 . Их решениями будут значения x 2 , x ≤ 2 , x > 2 и x ≥ 2 . Для этого изобразим график линейной функции y = 0 , 5 · x − 1 , приведенный ниже.

  • решением неравенства 0 , 5 · x − 1 0 считается промежуток, где график функции y = 0 , 5 · x − 1 располагается ниже О х ;
  • решением 0 , 5 · x − 1 ≤ 0 считается промежуток, где функция y = 0 , 5 · x − 1 ниже О х или совпадает;
  • решением 0 , 5 · x − 1 > 0 считается промежуток, гре функция располагается выше О х ;
  • решением 0 , 5 · x − 1 ≥ 0 считается промежуток, где график выше О х или совпадает.

Смысл графического решения неравенств заключается в нахождении промежутков, которое необходимо изображать на графике. В данном случае получаем, что левая часть имеет y = a · x + b , а правая – y = 0 , причем совпадает с О х .

Алгоритм решения линейных неравенств графическим способом.

Построение графика функции y = a · x + b производится:

  • во время решения неравенства a · x + b 0 определяется промежуток, где график изображен ниже О х ;
  • во время решения неравенства a · x + b ≤ 0 определяется промежуток, где график изображается ниже оси О х или совпадает;
  • во время решения неравенства a · x + b > 0 производится определение промежутка, где график изображается выше О х ;
  • во время решения неравенства a · x + b ≥ 0 производится определение промежутка, где график находится выше О х или совпадает.

Решить неравенство — 5 · x — 3 > 0 при помощи графика.

Необходимо построить график линейной функции — 5 · x — 3 > 0 . Данная прямая является убывающей, потому как коэффициент при x является отрицательным. Для определения координат точки его пересечения с О х — 5 · x — 3 > 0 получим значение — 3 5 . Изобразим графически.

Решение неравенства со знаком > , тогда необходимо обратить внимание на промежуток выше О х . Выделим красным цветом необходимую часть плоскости и получим, что

Необходимый промежуток является частью О х красного цвета. Значит, открытый числовой луч — ∞ , — 3 5 будет решением неравенства. Если бы по условию имели нестрогое неравенство, тогда значение точки — 3 5 также являлось бы решением неравенства. И совпадало бы с О х .

Ответ: — ∞ , — 3 5 или x — 3 5 .

Графический способ решения используется, когда левая часть будет отвечать функции y = 0 · x + b , то есть y = b . Тогда прямая будет параллельна О х или совпадающей при b = 0 . Эти случаю показывают, что неравенство может не иметь решений, либо решением может быть любое число.

Определить из неравенств 0 · x + 7 = 0 , 0 · x + 0 ≥ 0 то, которое имеет хотя бы одно решение.

Представление y = 0 · x + 7 является y = 7 , тогда будет задана координатная плоскость с прямой, параллельной О х и находящейся выше О х . Значит, 0 · x + 7 = 0 решений не имеет, потому как нет промежутков.

График функции y = 0 · x + 0 , считается y = 0 , то есть прямая совпадает с О х . Значит, неравенство 0 · x + 0 ≥ 0 имеет множество решений.

Ответ: второе неравенство имеет решение при любом значении x .

Неравенства, сводящиеся к линейным

Решение неравенств можно свести к решению линейного уравнения, которые называют неравенствами, сводящимися к линейным.

Данные неравенства были рассмотрены в школьном курсе, так как они являлись частным случаем решения неравенств, что приводило к раскрытию скобок и приведению подобных слагаемых. Для примера рассмотрим, что 5 − 2 · x > 0 , 7 · ( x − 1 ) + 3 ≤ 4 · x − 2 + x , x — 3 5 — 2 · x + 1 > 2 7 · x .

Неравенства, приведенные выше, всегда приводятся к виду линейного уравнения. После чего раскрываются скобки и приводятся подобные слагаемые, переносятся из разных частей, меняя знак на противоположный.

При сведении неравенства 5 − 2 · x > 0 к линейному, представляем его таким образом, чтобы оно имело вид − 2 · x + 5 > 0 , а для приведения второго получаем, что 7 · ( x − 1 ) + 3 ≤ 4 · x − 2 + x . Необходимо раскрыть скобки, привести подобные слагаемые, перенести все слагаемые в левую часть и привести подобные слагаемые. Это выглядит таким образом:

7 · x − 7 + 3 ≤ 4 · x − 2 + x 7 · x − 4 ≤ 5 · x − 2 7 · x − 4 − 5 · x + 2 ≤ 0 2 · x − 2 ≤ 0

Это приводит решение к линейному неравенству.

Эти неравенства рассматриваются как линейные, так как имеют такой же принцип решения, после чего возможно приведение их к элементарным неравенствам.

Для решения такого вида неравенства такого вида необходимо свести его к линейному. Это следует делать таким образом:

  • раскрыть скобки;
  • слева собрать переменные, а справа числа;
  • привести подобные слагаемые;
  • разделить обе части на коэффициент при x .

Решить неравенство 5 · ( x + 3 ) + x ≤ 6 · ( x − 3 ) + 1 .

Производим раскрытие скобок, тогда получим неравенство вида 5 · x + 15 + x ≤ 6 · x − 18 + 1 . После приведения подобных слагаемых имеем, что 6 · x + 15 ≤ 6 · x − 17 . После перенесения слагаемых с левой в правую, получим, что 6 · x + 15 − 6 · x + 17 ≤ 0 . Отсюда имеет неравенство вида 32 ≤ 0 из полученного при вычислении 0 · x + 32 ≤ 0 . Видно, что неравенство неверное, значит, неравенство, данное по условию, не имеет решений.

Ответ: нет решений.

Стоит отметить, что имеется множество неравенств другого вида, которые могут сводится к линейному или неравенству вида, показанного выше. Например, 5 2 · x − 1 ≥ 1 является показательным уравнением, которое сводится к решению линейного вида 2 · x − 1 ≥ 0 . Эти случаи будут рассмотрены при решении неравенств данного вида.


источники:

http://spacemath.xyz/sistemy-linejnyh-neravenstv-s-odnoj-peremennoj/

http://zaochnik.com/spravochnik/matematika/systems/linejnye-neravenstva-primery-reshenija/