Линейные уравнения с 2 переменными какой класс

Уравнения с двумя переменными (неопределенные уравнения)

Разделы: Математика

Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

Цель урока:

    повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
  • воспитание познавательного интереса к учебному предмету
  • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

Урок 1.

Ход урока.

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5•2+6 = 1

x = 4, y = -2.5•4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

m, n, x, y Z

Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид

5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: где m Z.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: , где n Z.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) =>

    б) =>

    в) =>

    г) =>

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а)

    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б)

    в)

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Z
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Z
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Z
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Z
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Z
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Z
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Z
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Z

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) (1;2), (5;2), (-1;-1), (-5;-2)

    Число 3 можно разложить на множители:

    a) б) в) г)
    в) (11;12), (-11;-12), (-11;12), (11;-12)
    г) (24;23), (24;-23), (-24;-23), (-24;23)
    д) (48;0), (24;1), (24;-1)
    е) x = 3m; y = 2m, mZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Z
    з) x = 2m; y = m; x = 2m; y = -m, m Z
    и)решений нет

    4) Решить уравнения в целых числах

    (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    (-4;-1), (-2;1), (2;-1), (4;1)
    (-11;-12), (-11;12), (11;-12), (11;12)
    (-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) (-1;0)
    б)(5;0)
    в) (2;-1)
    г) (2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Алгебра и начала математического анализа. 11 класс

    Конспект урока

    Алгебра и начала математического анализа, 11 класс

    Урок №42. Линейные уравнения и неравенства с двумя переменными

    Перечень вопросов, рассматриваемых в теме:

    • Решение уравнений, неравенств, систем уравнений и систем неравенств с двумя переменными;
    • Изображение в координатной плоскости множества решений уравнений, неравенств, систем уравнений, систем неравенств;
    • Нахождение площади получившейся фигуры.

    Глоссарий по теме

    Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными, где a, b и c — некоторые числа (a ≠ 0 , b ≠0), а, х и у — переменные.

    Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

    Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. Учебник: Алгебра 9 кл с углубленным изучением математики Мнемозина, 2014.

    Открытые электронные ресурсы:

    Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.

    Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.

    Теоретический материал для самостоятельного изучения

    Уравнения, а также системы уравнений имеют давнюю историю. Нам известно, что уже в Древнем Вавилоне и Индии повседневные задачи, связанные с земляными работами или планированием военных расходов, а также астрономическими наблюдениями решались с помощью уравнений и их систем.

    В то время еще не существовало привычного нам формального языка математики. Вавилоняне, также, как и индусы не использовали в своих трактатах привычные нам «икс» и «игрек». Не обозначали степень надстрочными индексами. И т.д. Их уравнения записаны в виде текстовых задач. Также, как и решения, не похожи на современные, а скорее напоминают цепочку логических рассуждений.

    Вместе с тем, если перевести в привычный нам вид те уравнения, которые умели решать в Древнем Вавилоне, то мы увидим: . И в древнем индийском манускрипте «Ариабхаттиам», датируемом 499 годом нашей эры, также встречаются задачи, решаемые с помощью квадратных уравнений. Индийские мудрецы (слово ученый тоже еще не существовало) уже не ограничивались решением конкретных житейских задач, но и работали над решением квадратного уравнения в общем виде.

    Привычный нам вид уравнения обретают только в конце шестнадцатого века, благодаря трудам Франсу Виета (1540 – 1603 гг.). Именно он, помимо прочих своих научных достижений обладает и неофициальным титулом «создатель алгебры». Поскольку разработал и активно внедрял символический язык алгебры – те самые, привычные нам «иксы и игреки».

    1.Найдите уравнения, которые являются линейными.

    4х + 5у = 10; ; у = 7х +4

    Ответ: 4х + 5у = 10; у = 7х +4

    Сегодня на уроке мы вспомним что такое линейные уравнения и неравенства с двумя переменными; системы линейный уравнений и неравенств, а также научимся изображать множество на плоскости, задаваемое линейным уравнением и неравенством.

    1. Линейные уравнения с двумя переменными.

    Уравнение вида ах + by +с =0, где а,b,с – некоторые числа, называется линейным уравнением с двумя переменными х и у.

    Решением уравнения ах + by +с =0, где а,b,с – некоторые числа, называется пара значений обращающая уравнение в верное числовое равенство.

    Если одновременно а и b, то уравнение ах + by +с =0 является уравнением некоторой прямой. Для построения прямой достаточно найти две точки этой прямой.

    Построить график уравнения 2х+у =1

    На координатной плоскости отметим точки с координатами (0;1) и (2;-3). Через две точки на плоскости проведем прямую. Полученная прямая является геометрической моделью уравнения 2х+у =1.

    1. Линейные неравенства с двумя переменными.

    Линейным неравенством с двумя переменными называется неравенство вида ах + bу + с 0, где х и у – переменные, а, b, c – некоторые числа.

    Решением неравенства с двумя переменными называется пара значений переменных, обращающая его в верное равенство.

    Является ли пара (2;1) решением неравенства 5х + 2у > 4 . Является, тк при подстановке в него вместо х числа 2, а вместо у числа 1 получается верное равенство 10 + 2 > 4.

    Если каждое решение неравенства с двумя переменными изобразить точкой в координатной плоскости, то получится график этого неравенства. Он является некоторой фигурой.

    Найти множество точек координатной плоскости, удовлетворяющих неравенству 3х – 2у +6 > 0.

    1. Уравнение 3х – 2у +6 = 0 является уравнением прямой, проходящей через точки(- 2; 0) и (0; 3).
    2. Пусть точка М11,у1) лежит в заштрихованной полуплоскости (ниже прямой 3х – 2у +6 = 0, а М21,у2)лежит на прямой 3х – 2у +6 = 0. Тогда 2у2 – 3х1 – 6 = 0, а 2у1 – 3х1 – 6 0 штриховкой (рис. 1)

    Рисунок 1 – решение неравенства 3х – 2у +6 > 0

    Если в линейном неравенстве с двумя переменными знак неравенства заменить знаком равенства, то получится линейное уравнение ах + by +с =0, графиком которого является прямая при условии, что и . Прямая разбивает плоскость на две полуплоскости. Одна из них является графиком неравенства ах + bу + с 0

    Чтобы решить неравенство ах + bу + c 0, достаточно взять какую-нибудь точку М11; у1), не лежащую на прямой aх + bу + c = 0, и определить знак числа aх1 + bу1 + c.

    Конспект урока на тему «Линейные уравнения с двумя переменными

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Линейные уравнения с двумя переменными

    УМК: Алгебра 7 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н.Г. Миндюк и др.]; под ред. С.А. Теляковского. – 2-е изд. – М.: Просвещение, 2014

    Тема: Линейные уравнения с двумя переменными

    Цели: Познакомить учащихся с понятиями линейного уравнения с двумя переменными и его решения, научить выражать из уравнения х через у или у через х .

    Познавательные: выдвигать и обосновывать гипотезы, предлагать способы их проверки

    Регулятивные: сличать способ и результат своих действий с заданным эталоном, обнаруживать отклонения и отличия от эталона; составлять план и последовательность действий.

    Коммуникативные: устанавливать рабочие отношения; эффективно сотрудничать и способствовать продуктивной кооперации.

    Личностные: ф ормирование навыков организации анализа своей деятельности

    Оборудование: компьютер, мультимедийный проектор, экран

    I Организационный момент

    — Послушайте сказку про Деда-Равняло и догадайтесь, о чем мы сегодня будем говорить

    Жил в избушке на лесной опушке дед по прозвищу Равняло. Любил он с числами подшучивать. Возьмет дед выстроит по обе стороны от себя числа, соединит их знаками, а самые резвые в скобки возьмет, но следит, чтобы одна часть равнялась другой. А потом какое-нибудь число спрячет под маской «икс» и попросит своего внука, маленького Равнялку, найти его. Равнялка хоть и мал, но дело свое знает: быстро перегонит все числа, кроме «икса», в другую сторону и знаки не забудет у них изменить на противоположные. А числа слушаются его, быстро выполняют по его приказу все действия, и «икс» известен. Дед смотрит на то, как ловко у внучка все получается и радуется: хорошая ему смена растет.

    — Итак, о чем идет речь в этой сказке? (об уравнениях)

    II . Давайте вспомним всё, что мы знаем о линейных уравнениях и попробуем провести параллель между известным нам материалом и новым материалом.

    Какой тип уравнения нам известен? (линейное уравнение с одной переменной)

    Вспомним определение линейного уравнения с одной переменной.

    Что называется корнем линейного уравнения с одной переменной?

    Сформулируем все свойства линейного уравнения с одной переменной.

    Заполняется 1 часть таблицы

    ах=в, где х – переменная, а,в- числа.

    Значение х, при котором уравнение обращается в верное равенство

    1) перенос слагаемых из одной части уравнения в другую, изменив их знак на противоположный.

    2) обе части уравнения умножить или разделить на одно и тоже, не равное нулю число.

    Линейное уравнение с двумя переменной.

    ах + ву = с, где х,у – переменные, а,в.с – числа.

    Значения х, у, обращающие уравнение в верное равенство.

    Верны свойства 1,2.

    3) равносильные уравнения:

    После того, как заполнили первую часть таблицы, опираясь на аналогию, начинаем заполнять вторую строку таблицы, тем самым узнавать новый материал.

    III . Обратимся к теме: линейное уравнение с двумя переменными . Само название темы наталкивает на мысль, что нужно вводить новую переменную, например у.

    Существует два числа х и у, одно больше другого на 5. Как записать соотношение между ними? (х – у = 5) это и есть линейное уравнение с двумя переменными. Сформулируем по аналогии с определением линейного уравнения с одной переменной определение линейного уравнения с двумя переменными (Линейным уравнением с двумя переменными называется уравнение вида ax + by = c, где a,b и c – некоторые числа, а x и y –переменные).

    Уравнение xy = 5 при x = 8, y = 3 обращается в верное равенство 8 – 3 = 5. Говорят, что пара значений переменных x = 8, y = 3 является решением этого уравнения.

    — Сформулируйте определение решения уравнения с двумя переменными (Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство)

    Пары значений переменных иногда записывают короче: (8;3). В такой записи на первом месте пишут значение x а на втором — y.

    Уравнения с двумя переменными, имеющие одни и те же решения (или не имеющие решений), называются равносильными.

    Уравнения с двумя переменными обладают такими же свойствами, как и уравнения с одной переменной:

    Если в уравнении перенести любой член из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

    Если обе части уравнения умножить или разделить на одно и то же число(не равное нулю), то получится уравнение равносильное данному.

    Пример 1. Рассмотрим уравнение 10x + 5y = 15. Используя свойства уравнений, выразим одну переменную через другую.

    Для этого сначала перенесем 10x из левой части в правую, изменив его знак. Получаем равносильное уравнение 5y = 15 — 10x.

    Разделим каждую часть этого уравнения на число 5, получим равносильное уравнение

    у = 3 — 2x. Таким образом, мы выразили одну переменную через другую. Пользуясь этим равенством, для каждого значения x можно вычислить значение y.

    Если x = 2, то y = 3 — 2· 2 = -1.

    Если x = -2, то y = 3 — 2· (-2) = 7. Пары чисел (2; -1), (-2; 7) – решения данного уравнения. Таким образом, данное уравнение имеет бесконечно много решений.

    Из истории. Проблема решения уравнений в натуральных числах подробно рассматривалась в работах известного греческого математика Диофанта (III в.). В его трактате «Арифметика» приводятся остроумные решения в натуральных числах самых разнообразных уравнений. В связи с этим уравнения с несколькими переменными, для которых требуется найти решения в натуральных или целых числах, называют диофантовыми уравнениями.

    Пример 2. Мука расфасована в пакеты по 3 кг и по 2 кг. Сколько пакетов каждого вида надо взять, чтобы получилось 20 кг муки?

    Допустим, что надо взять x пакетов по 3 кг и y пакетов по 2 кг. Тогда 3x + 2y = 20. Требуется найти все пары натуральных значений переменных x и y, удовлетворяющих этому уравнению. Получаем:

    Подставляя в это равенство вместо x последовательно все числа 1,2,3 и т.д., найдем при каких значениях х, значения y являются натуральными числами.

    Получаем: (2;7), (4;4), (6;1). Других пар, удовлетворяющих данному уравнению нет. Значит надо взять либо 2 и 7, либо 4 и 4, либо 6 и 1 пакетов соответственно.

    IV . Работа по учебнику (устно) № 1025, № 1027(а)

    Самостоятельная работа с проверкой в классе.

    1. Выпишите линейно уравнение с двумя переменными.

    а ) 3х + 6у = 5 в) ху = 11 б) х – 2у = 5

    2. Является ли пара чисел решением уравнения?

    3. Выразите из линейного уравнения

    4х – 3у = 12 а) х через у б) у через х

    4. Найдите три, каких либо решения уравнения.

    V . Итак, подведем итог:

    Дать определение линейного уравнения с двумя переменными.

    Что называется решением (корнем) линейного уравнения с двумя переменными.

    Сформулировать свойства линейного уравнения с двумя переменными.


    источники:

    http://resh.edu.ru/subject/lesson/6122/conspect/

    http://infourok.ru/konspekt-uroka-na-temu-lineynie-uravneniya-s-dvumya-peremennimi-1373586.html