Линейные уравнения с двумя и тремя неизвестными

Математика

63. Два уравнения с тремя неизвестными . Пусть имеем уравнения:

3x + 4y – 2z = 11
5x + 4y + 2z = 19,

которые надо решить совместно. Мы умеем решать совместно 2 уравнения с двумя неизвестными, почему прежде всего приходит мысль, что здесь одно неизвестное является лишним и что его, вероятно, можно заменить любым числом. И действительно. Если дадим x произвольное значение, например, возьмем x = 7, то получим

21 + 4y – 2z = 11
35 + 4y + 2z = 19,

т. е. 2 уравнения с двумя неизвестными, которые мы умеем решить.

Упростив эти уравнения, получим:

4y – 2z = –10
4y + 2z = –16.

Сложив из по частям, получим:

Вычитая из 2-го первое, получим:

Взяв x = 0, получим:

4y – 2z = 11
4y + 2z = 19.

Решив (так же, как и выше) эти уравнения, получим:

Так же для x = 1, получим y = 2 ¾; z = 1 ½ и т. д.

Эти решения можно записать в таблице, причем, как видим, здесь одно неизвестное (у нас x) является независимым переменным, а два других являются зависимыми переменными.

Вот эта таблица:

два уравнения с тремя неизвестными имеют бесконечно много решений, причем для получения их надо одному из неизвестных давать произвольные значения .

Чтобы удобнее получать эти решения, можно заранее из данных уравнений определить зависимые переменные через независимое.

Для этой цели перенесем члены 3x и 5x, имеющиеся в наших уравнениях, в правую часть (эти члены, ведь, приходится считать известными), — получим:

4y – 2z = 11 – 3x
4y + 2z = 19 – 5x.

Сложив эти уравнения по частям, получим:

8y = 30 – 8x и y = (30 – 8x) / 8 = (15 – 4x) / 4.

Вычитая по частям из 2-го уравнения первое, получим:

4z = 8 – 2x и z = (8 – 2x) / 4 = (4 – x) / 2.

Теперь, взяв для x какое-нибудь значение, например, x = 2, легко в уме найдем: y = 1 ¾ и z = 1.

Вот еще пример. Пусть даны уравнения:

2x + y – z = 7
3x + 2y + 4z = 11.

Определим из них x и y через z. Для этого сначала перенесем члены с z в правую часть уравнения:

2x + y = 7 + z и 3x + 2y = 11 – 4z (1).

Обе части первого уравнения умножим на 2:

4x + 2y = 14 + 2z
3x + 2y = 11 – 4z.

Вычтем по частям из 1-го уравнения второе:

Таким образом мы определили x через z. Затем умножим обе части 1-го уравнения из системы (1) на 3 и обе части 2-го на 2 (чтобы уравнять коэффициенты при x). Получим:

6x + 3y = 21 + 3z
6x + 4y = 22 – 8z.

Вычитая по частям из 2-го уравнения первое, получим:

Таким образом определили y через z.

Пользуясь равенствами (2) и (3), легко найти сколько угодно решений данных двух уравнений, причем надо неизвестному z давать произвольные значения. Вот несколько решений:

Системы линейных уравнений

Линейные уравнения (уравнения первой степени) с двумя неизвестными
Системы из двух линейных уравнений с двумя неизвестными
Системы из трех линейных уравнений с тремя неизвестными

Линейные уравнения (уравнения первой степени) с двумя неизвестными

Определение 1 . Линейным уравнением (уравнением первой степени) с двумя неизвестными x и y называют уравнение, имеющее вид

ax +by = c ,(1)

где a , b , c – заданные числа.

Определение 2 . Решением уравнения (1) называют пару чисел (x ; y) , для которых формула (1) является верным равенством.

Пример 1 . Найти решение уравнения

2x +3y = 10(2)

Решение . Выразим из равенства (2) переменную y через переменную x :

(3)

Из формулы (3) следует, что решениями уравнения (2) служат все пары чисел вида

где x – любое число.

Замечание . Как видно из решения примера 1, уравнение (2) имеет бесконечно много решений. Однако важно отметить, что не любая пара чисел (x ; y) является решением этого уравнения. Для того, чтобы получить какое-нибудь решение уравнения (2), число x можно взять любым, а число y после этого вычислить по формуле (3).

Системы из двух линейных уравнений с двумя неизвестными

Определение 3 . Системой из двух линейных уравнений с двумя неизвестными x и y называют систему уравнений, имеющую вид

(4)

Определение 4 . В системе уравнений (4) числа a1 , b1 , a2 , b2 называют коэффициентами при неизвестных , а числа c1 , c2 – свободными членами .

Определение 5 . Решением системы уравнений (4) называют пару чисел (x ; y) , являющуюся решением как одного, так и другого уравнения системы (4).

Определение 6 . Две системы уравнений называют равносильными (эквивалентными) , если все решения первой системы уравнений являются решениями второй системы, и все решения второй системы являются решениями первой системы.

Равносильность систем уравнений обозначают, используя символ «»

Системы линейных уравнений решают с помощью метода последовательного исключения неизвестных , который мы проиллюстрируем на примерах.

Пример 2 . Решить систему уравнений

(5)

Решение . Для того, чтобы решить систему (5) исключим из второго уравнения системы неизвестное х .

С этой целью сначала преобразуем систему (5) к виду, в котором коэффициенты при неизвестном x в первом и втором уравнениях системы станут одинаковыми.

Если первое уравнение системы (5) умножить на коэффициент, стоящий при x во втором уравнении (число 7 ), а второе уравнение умножить на коэффициент, стоящий при x в первом уравнении (число 2 ), то система (5) примет вид

(6)

Теперь совершим над системой (6) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (6) преобразуется в равносильную ей систему

Из второго уравнения находим y = 3 , и, подставив это значение в первое уравнение, получаем

Пример 3 . Найти все значения параметра p , при которых система уравнений

(7)

а) имеет единственное решение;

б) имеет бесконечно много решений;

в) не имеет решений.

Решение . Выражая x через y из второго уравнения системы (7) и подставляя полученное выражение вместо x в первое уравнение системы (7), получим

Следовательно, система (7) равносильна системе

(8)

Исследуем решения системы (8) в зависимости от значений параметра p . Для этого сначала рассмотрим первое уравнение системы (8):

y (2 – p) (2 + p) = 2 + p(9)

Если , то уравнение (9) имеет единственное решение

Следовательно, система (8) равносильна системе

Таким образом, в случае, когда , система (7) имеет единственное решение

Если p = – 2 , то уравнение (9) принимает вид

,

и его решением является любое число . Поэтому решением системы (7) служит бесконечное множество всех пар чисел

,

где y – любое число.

Если p = 2 , то уравнение (9) принимает вид

и решений не имеет, откуда вытекает, что и система (7) решений не имеет.

Системы из трех линейных уравнений с тремя неизвестными

Определение 7 . Системой из трех линейных уравнений с тремя неизвестными x , y и z называют систему уравнений, имеющую вид

(10)

Определение 9 . Решением системы уравнений (10) называют тройку чисел (x ; y ; z) , при подстановке которых в каждое из трех уравнений системы (10) получается верное равенство.

Пример 4 . Решить систему уравнений

(11)

Решение . Будем решать систему (11) при помощи метода последовательного исключения неизвестных .

Для этого сначала исключим из второго и третьего уравнений системы неизвестное y , совершив над системой (11) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • ко второму уравнению прибавим первое уравнение и заменим второе уравнение системы на полученную сумму;
  • из третьего уравнения вычтем первое уравнение и заменим третье уравнение системы на полученную разность.

В результате система (11) преобразуется в равносильную ей систему

(12)

Теперь исключим из третьего уравнения системы неизвестное x , совершив над системой (12) следующие преобразования:

  • первое и второе уравнения системы оставим без изменений;
  • из третьего уравнения вычтем второе уравнение и заменим третье уравнение системы на полученную разность.

В результате система (12) преобразуется в равносильную ей систему

(13)

Из системы (13) последовательно находим

Пример 5 . Решить систему уравнений

(14)

Решение . Заметим, что из данной системы можно получить удобное следствие, сложив все три уравнения системы:

Если числа (x ; y ; z) являются решением системы (14), то они должны удовлетворять и уравнению (15). Однако в таком случае числа (x ; y ; z) должны также быть решением системы, которая получается, если из каждого уравнения системы (14) вычесть уравнение (15):

Поскольку мы использовали следствие из системы (14), не задумываясь о том, являются ли сделанные преобразования системы (14) равносильными, то полученный результат нужно проверить. Подставив тройку чисел (3 ; 0 ; –1) в исходную систему (14), убеждаемся, что числа (3 ; 0 ; –1) действительно являются ее решением.

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы с нелинейными уравнениями» и нашим учебным пособием «Системы уравнений».

Линейные уравнения и системы линейных уравнений

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

В данном уроке мы рассмотрим линейные уравнения и системы линейных уравнений с двумя и тремя переменными.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Уравнения и неравенства»


источники:

http://www.resolventa.ru/spr/algebra/system.htm

http://interneturok.ru/lesson/algebra/11-klass/povtorenie/lineynye-uravneniya-i-sistemy-lineynyh-uravneniy