Линейные уравнения с параметром 7 класс определение

Линейные уравнения с параметрами в 7-м классе (методические рекомендации)

Разделы: Математика

Известно, что в программе по математике для неспециализированных школ задачам с параметрами отводится незначительное место.
К задачам с параметрами, рассматриваемым в школьном курсе, относятся, например, задачи, в которых отыскивается решение линейных и квадратных уравнений в общем виде, исследуется количество их корней в зависимости от значений параметров.
Естественно, что такой небольшой класс задач не позволяет учащимся овладеть методами решения задач с параметрами. В результате, у учащихся возникает психологический барьер уже при «первом» знакомстве с параметрами — это неизвестное и известное, переменная и постоянная. Выход из сложившейся ситуации — включать задачи с параметрами в каждую тему.

  • Для решения задач с параметрами требуется:

а) свободное владение навыками решения уравнений;
б) знание специфических преобразований, которые используются в уравнениях;
в) умение построить логическую цепочку рассуждений.

а) отработку навыков решения уравнений;
б) повышают интеллектуальный уровень ученика и его логическое мышление;
в) формируют навыки исследовательской деятельности;
г) повышают интерес к математике.

Прежде чем ввести понятие «параметр», учащимся необходимо напомнить роль букв в алгебре. Обратить внимание ребят на то, что за буквой скрывается число.
Предложите учащимся задания, в которых надо выразить одну переменную через другую. К этим задачам надо возвращаться постоянно, особенно в 7-м классе, поскольку умение выражать одну переменную через другую очень пригодится при решении задач по физике, где требуется вначале составить буквенное выражение и только затем подставить числовые значения.

Пример №2.
Выразить х : а) ах = а-1; б) (а+2) х = а-1; в) а х = а -1.
Укажите, при каких значениях а имеет смысл полученное выражение.
Найдите значение х при а=2; а=3; а= -10.
Повторите на простых примерах, что такое уравнение, что значит решить уравнение. При решении уравнений типа 2х-2=-1;14х=-4; 3-3х=1 обратите внимание учащихся на то, что мы выразили неизвестное, которое надо найти, через числа.
Покажите, что в уравнение, помимо неизвестного, могут быть введены и другие буквы, и буквенные выражения. Например, ах=а-1, (а+2)х=а-1, (а+2)х=(а+2)-1, а х=а -1.
При этом, как всегда в алгебре, мы полагаем, что буквы могут принимать любые числовые значения. Например, задавая произвольно значения а для уравнения ах=а-1 получаем
при а=2 имеем 2х=2-1; при а=3 имеем 3х=3-1; при а=0 имеем 0х=0-1; при а=-4 имеем -4х=-4-1.

Пример №3.
Дано уравнение ах=5а-9.
Напишите уравнение, которое получится, если а=10; а=-2; а=0.

Пример №4.
Решить уравнение относительно х:
х+2=а+7.
Решение: х=а+5.
Переменную, которую надо найти, будем называть неизвестной, а переменную, через которую будем выражать искомую неизвестную, назовем параметром.

  • Параметрэто переменная величина, которая в процессе решения уравнения (задачи) считают фиксированной и относительно которойпроводится анализ полученного решения.
  • Решить уравнение с параметромэтозначит для каждого значения параметра найти значение неизвестной переменной, удовлетворяющее этому уравнению.

Заметим, что в нашем примере параметр а может принимать любые значения.
Ответ запишем так: при любом значении параметра а

х=а+5 .
Основное, что нужно усвоить при первом «знакомстве» с параметром, это необходимость осторожного обращения с фиксированным, но неизвестным числом. Необходимость аккуратного обращения с параметром хорошо видна в примерах, где замена параметра числом делает задачу банальной. К таким задачам, например, относятся задачи, в которых требуется сравнить два числа.

Пример №5.
Сравнить числа: а) а и ;
б) и 3а.
Решение:
а) естественно рассмотреть три случая:
если а 3а; если а = 0, то а = 3а; если а > 0, то а 3а; если а = 0, то -а = 3а; если а > 0, то -а -1 уравнение имеет два корня.

Как было сказано ранее, к уравнениям с параметрами надо возвращаться постоянно. Поэтому, на конец учебного года можно вынести уравнения:
1) (а-3)х=а2-9;
2) (3-2а)х=4а2-12а+9;
3) (а2-4)х=а2-5а+6;
4) (а2-1)х=а3+1
Решение.1) (а2-1)=0, а=±1.
При а=1 уравнение имеет вид 0х=2. Следовательно, решений нет.
При а=-1 уравнение имеет вид 0х=0. Следовательно, х- любое число.

Задачи для самостоятельного решения.

Для всех значений параметров а и в решите уравнения:

  1. (5а+1)х+25а2+10а+1=0;
  2. ах-а=х-1;
  3. (а2-4)х=а2+а-2;
  4. (а2-1)х-а2+2а-1=0;
  5. (а-2в)х+а+в=3;
  6. каких значениях параметра а уравнение а2(х-2)=х+а-3 имеет бесконечное множество решений?
  7. каком значении параметра а корень уравнения х+3=2х-а будет отрицательным числом?
  8. каждого значения параметра а определить число корней уравнения |x-1| =а.
  9. каждого значения параметра а определить число корней уравнения|5x-3| =а.

Используемая литература.

  1. Газета «Математика». Учебно-методическое приложение к газете «Первое сентября»: Е.Пронина, « Линейные уравнения с параметрами» №12, 2000 г.; C.Неделяева, «Особенности решения задач с параметрами» №34, 1999 г.
  2. Азаров А.И., Барвенов С.А., Федосенко В.С. Методы решения задач с параметрами. Математика для старшеклассников. Минск: «Аверсэв», 2003.
  3. Мочалов В.В., Сильвестров В.В. Уравнения и неравенства с параметрами. Чебоксары: Изд-во Чувашского университета, 2004.
  4. Соколовская С.И., ДухонМ.Ю. Линейные уравнения и неравенства с параметром. Пособие для учащихся старших классов. М., 2005.

Урок по алгебре в 7,8 классе «Линейное уравнение с параметром и его решение в общем виде»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Тема: Линейное уравнение с параметром и его решение в общем виде.

Образовательные: дать определение линейного уравнения с параметром, рассмотреть способы его решения, схему исследования линейных уравнений с параметрами. Формировать навыки решения линейных уравнений с параметрами.

Развивающие: развивать уровень математического и логического мышления, первоначальные навыки исследовательской деятельности.

Воспитательные: формирование волевые качества, формирование коммуникабельность, выработка объективной оценки своих достижений, формирование ответственности.

Поприветствовать учащихся, проверить их готовность к уроку, объявить тему урока и цель урока.

II . Проверка домашнего задания.

ученики записывают на доске решения уравнений;

обсуждение, замечания, уточнения к решениям на доске.

III . Актуализация опорных знаний учащихся.
№1. Решить уравнение: m х 7 = — 1.

Если m = 0, то уравнение примет вид 0 • m = 6 и не имеет решений;

Если m ≠ 0, то уравнение примет вид х = и имеет единственное решение.

Ответ: при m = 0 нет решений; при m ≠ 0 х = .

2. При каком значении b уравнение |х| + b = 0 не будет иметь корней?

Решение: = — b ;

Если b = 0, то уравнение примет вид |х| = 0, т.е. х = 0 и имеет ед. решение;

Если b > 0, то уравнение не имеет решений;

Если b b , т.е. х = ± b и имеет два корня.

IV . Объяснение нового материала.

1. Определение линейного уравнения с параметром.

Уравнение вида Ах = В, (1)

где А, В — выражения, зависящие от параметров, ах- неизвестное,

называется линейным уравнением с параметрами.

2. что значит решить уравнение с параметрами?

Решить уравнение с параметрами — значит указать, при каких допустимых значениях параметров существуют решения, выяснить их число, каковы они; кроме того, обычно при решении уравнений с параметрами необходимо выяснить, при каких допустимых значениях параметров решений нет.

в) способы решения линейного уравнения.

Линейные уравнения с параметром решаются двумя способами: аналитическим и графическим.

Графический способ решения линейного уравнений с параметром удобен тогда, когда нужно определить количество корней уравнения.

Аналитический способ решения линейного уравнения с параметром удобен тогда, когда требуется найти решение уравнения при каждом значении параметра.

г) схема исследования линейного уравнения (1).

1. Если А = 0, В ≠ 0 , то уравнение (1) примет вид 0 • х = В и не имеет решений;

2. Если А = 0, В = 0, то уравнение (1) примет вид 0 • х = 0 и имеет бесконечное
множество решений (х — любое число);

3. Если А ≠ 0 , В — любое, то уравнение (1) имеет единственное решение х = .

Замечание. Если линейное уравнение не представлено в виде (1), то сначала нужно привести его к виду (1) и только после этого проводить исследование.

V . Формирование умений и навыков учащихся.

1. Решить уравнение: а) (а + 3)х =5.

Если а + 3 = 0, т.е. а = -3, то уравнение примет вид 0 • х = 5 и не имеет решений;

Если а + 3 ≠ 0 , т.е. а ≠ -3, то уравнение примет вид х = и имеет ед. решение.

Ответ: при а = -3 нет решений; при а ≠ -3 х =.

Если а – 6 = 0, т.е. а = 6, то уравнение примет вид 0 • х = -2 и не имеет решений;

Если а – 6 ≠ 0 , т.е. а ≠ 6, то уравнение примет вид х = и имеет ед. решение.

Ответ: при а = 6 нет решений; при а ≠ 6 х = .

2. Решить уравнение: а) (а + 4)х = 2а +1.

Если а + 4 = 0, т.е. а = -4, то уравнение примет вид 0 • х = -7 и не имеет решений;

Если а + 4 ≠ 0, т.е. а ≠ -4, то уравнение примет вид х = и имеет ед. решение.

Ответ: при а = -4 нет решений; при а ≠ -4 х = .

Если а — 1 = 0, т.е. а = 1, то уравнение примет вид 0• х = -1 и не имеет решений;

Если а — 1 ≠ 0, т.е. а ≠ 1, то уравнение примет вид х = и имеет ед. решение. Ответ: при a = 1 нет решений; при а ≠ 1 х =.

3. Решить уравнение: а) (а + 1)х = а + 1.

Если а + 1 = 0, т.е. а = -1, то уравнение примет вид 0 • х = 0 и имеет бесконечное множество решений (х — любое число);

Если а + 1 ≠ 0 , т.е. а ≠ -1, то уравнение примет вид х =, х = 1 и имеет ед. решение.

Ответ: при а = -1 х — любое число; при а ≠ -1 х = 1.

Если а – 4 = 0, т.е. а = 4, то уравнение примет вид 0 • х = 0 и имеет бесконечное

множество решений (х — любое число);

Если а – 4 ≠ 0 , т.е. а ≠ 4, то уравнение примет вид х =, х = -1 и имеет ед. решение.

Ответ: при а = 4 х — любое число; при а ≠ 4 х = -1.

4. Решить уравнение: а) (а – 7)х = а(а – 7).

Если а – 7 = 0, т.е. а = 7, то уравнение примет вид 0 • х = 0 и имеет бесконечное

множество решений (х — любое число);

Если а – 7 ≠ 0 , т.е. а ≠ 7, то уравнение примет вид х =, х = а и имеет ед. решение.

Ответ: при a = 7 х — любое число; при а ≠ 7 х = а.

б) (а+5)х = (а + 5)(а – 2).

Если а + 5 = 0, т.е. а = -5, то уравнение примет вид 0 • х = 0 и имеет бесконечное

множество решений (х — любое число);

Если а + 5 ≠ 0 , т.е. а ≠ -5, то уравнение примет вид х = , х = а – 2 и

имеет ед. решение.

Ответ: при a = -5 х — любое число; при a ≠ -5 x = a – 2.

5. Решить уравнение (а – 7)х = а 2 – 14а + 49.

Решение: (а – 7)х = (а – 7) 2 .

Если а – 7 = 0, т.е. а = 7, то уравнение примет вид 0 • х = 0 и имеет бесконечное

множество решений (х — любое число);

Если а – 7 ≠ 0 , т.е. а ≠ 7, то уравнение примет вид х =, х = а – 7 и имеет единственное решение.

Ответ: при а = 7 х — любое число; при а ≠ 7 х = а – 7.

VI . Подведение итогов урока.

Что нового сегодня Вы узнали на уроке? Дайте определение линейного уравнения с параметрами. Что значит решить уравнение с параметром? Назовите способы решения и схему исследования линейного уравнения с параметром.

VII . Домашнее задание.

Решить уравнения: а) (а – 9)х = 4; б) (а – 6)х = а + 8; в) (а + 3)х = а + 3;

г) (а + 2)х = (а + 2)(а – 3); г) (а + 3)х = а 2 + 6а + 9.

Линейные уравнения с параметром

Рассмотрим линейные уравнения с параметром вида: $$p(a)x-q(a)=0,$$ где \(p(a)\) и \(q(a)\)- выражения, которые зависят от параметра. Для того, чтобы решить такое уравнение, нужно найти все \(x\) при всех значениях параметра \(a\). Приведем наше уравнение к виду: $$p(a)x=q(a),$$ Отсюда единственное решение: \(x=\frac\) при \(p(a)≠0.\) Если же \(p(a)=0\) и \(q(a)=0\), то решением данного уравнения является любое число. И последний случай, когда \(p(a)=0\),а \(q(a)≠0\), то уравнение не имеет решений. Замечу, что по некоторым уравнениям сразу невозможно определить, являются ли они линейными. Выполнив некоторые преобразования, вдруг обнаружим, что в уравнении отсутствуют члены с \(x\) в степени большей, чем 1. Если изначально у нас и были старшие степени, то теперь они сократились. Мы провели анализ линейного уравнения в общем виде, теперь разберем несколько примеров:

Решить уравнение \(ax-5a=7x-3\) при всех возможных \(a\).

Перенесем все одночлены с \(x\) влево, а оставшиеся члены – вправо. И вынесем \(x\) за скобку, как общий множитель: $$x(a-7)=5a-3;$$ Первый случай, когда \((a-7)≠0\). Тогда мы можем поделить все уравнение на \(a-7\) и выразить: $$x=\frac<5a-3>.$$ Второй случай, когда \((a-7)=0\), получим уравнение $$x*0=32,$$ которое не имеет решений. Таким образом, мы нашли решения уравнения для всех значений параметра \(а\). Например, \(x=\frac<2><7>\) при \(a=0,\) \(x=\frac<-1><3>\) при \(a=1\) и т.д.
Ответ: При \(a=7\) \(x∈∅;\)
при \(a≠7\) \(x=\frac<5a-3>.\)

Найдите все \(a\), при которых корнем уравнения $$ax+5a-2(3x+2)=-5x+a^2$$ будет любое число.

Раскроем скобки и перенесем все члены, содержащие \(x\), влево, а остальные – вправо. $$ax-6x+5x=-5a+4+a^2$$ Приведем подобные: $$ax-x=a^2-5a+4$$ И вынесем за скобку \(x\) и разложим квадратный многочлен на множители: $$x(a-1)=a^2-5a+4$$ $$x(a-1)=(a-1)(a-4)$$ Первый случай: \((a-1)=0\),т.е. \(a=1\) $$x*0=(a-1)(a-4)$$ $$x*0=0.$$ Решением уравнения будет любое число.
Второй случай: \((a-1)≠0\), т.е. \(a≠1\) $$x=\frac<(a-1)(a-4)>=a-4.$$ Решением данного уравнения будет одно число \(x=a-4\).
Ответ: \(a=1.\)

Из ОДЗ видно, что \(5a+x≠0\) и \(x-5a≠0,\) таким образом, \(x≠±5a.\) Приведем уравнение к общему знаменателю \(x^2-25a^2\) и умножим на него все уравнение: $$x^2-5ax-x^2-10ax-25a^2=-100a^2$$ $$-15ax=-75a^2$$ $$ax=5a^2.$$

После преобразований получили линейное уравнение.

Первый случай: \(a=0.\) Получаем уравнение \(0*x=0.\) Решениями этого уравнения будет любое число, кроме \(x=0\) (ОДЗ \(x≠±5a\)).

Ответ: При \(a=0\) решениями уравнения будут все действительные числа, кроме \(x=0.\) Если \(a≠0,\) то решений нет.


источники:

http://infourok.ru/urok-po-algebre-v-klasse-lineynoe-uravnenie-s-parametrom-i-ego-reshenie-v-obschem-vide-821574.html

http://sigma-center.ru/linear_equation_with_parametr