Линейные уравнения с постоянными задача коши

Задача Коши онлайн

Данная задача возникает при поиске частного решения дифференциального уравнения. Наш онлайн калькулятор, построенные на основе системы Wolfram Alpha, позволяет найти решение задачи Коши для различных типов дифференциальных уравнений. Чтобы начать работу, необходимо ввести данные своей задачи (дифференциальное уравнение и начальные условия) в калькулятор.

Найти решение задачи Коши для дифференциального уравнения:

при заданных начальных условиях:

При постановке задачи Коши, указываются так называемые начальные условия, позволяющие однозначно выделить искомое частное решение из общего. Эти условия включают в себя значения функции и всех её производных до включительно (где -порядок дифференциального уравнения), заданные в одной и той же точке .

Поясним вышесказанное на конкретном примере. Пусть нам требуется найти частное решение дифференциального уравнения:

удовлетворяющее начальным условиям:

Первым делом, используя различные методы (Бернули, вариации произвольной постоянной Лагранжа), сначала находим общее решение данного дифференциального уравнения:

Теперь, для поиска частного решения, нам необходимо использовать заданные начальные условия. Для этого, находим производную функции полученной ранее:

Далее, поставляем начальные условия в функцию и её производную :

Решая полученную систему уравнений получаем значения произвольных постоянных и :

Подставляем полученные результаты в общее решение дифференциального уравнения, в результате получаем искомое частное решение:

Другие полезные разделы:

Оставить свой комментарий:

Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме

Линейные уравнения с постоянными задача коши

Данко П. Е., Попов А. Г., Кожевникова Т. Я. Высшая математика в упражнениях и задачах…
Часть II. Глава IV. Обыкновенные дифференциальные уравнения

§ 1. Дифференциальные уравнения первого порядка

1. Основные понятия. Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функцию и производные (или дифференциалы) этой функции. Если независимая переменная одна, то уравнение называется обыкновенным; если же независимых переменных две или больше, то уравнение называется дифференциальным уравнением в частных производных.

Наивысший порядок производной, входящей в уравнение, называется порядком дифференциального уравнения. Например:

1) х²у’ + 5xy = у² – обыкновенное дифференциальное уравнение первого порядка;

2) – обыкновенное дифференциальное уравнение второго порядка;

3) y’³ + y»y»’ = х – обыкновенное дифференциальное уравнение третьего порядка;

4) F (х, у, у’, у») = 0 – общий вид обыкновенного дифференциального уравнения второго порядка;

5) – уравнение в частных производных первого порядка.

В этом параграфе рассматриваются обыкновенные дифференциальные уравнения первого порядка, т. е. уравнения вида F (х, у, у’) = 0 или (в разрешенном относительно у’ виде) y’ = f(х, у).

Решением дифференциального уравнения называется такая дифференцируемая функция у = φ (x), которая при подстановке в уравнение вместо неизвестной функции обращает его в тождество. Процесс нахождения решения дифференциального уравнения называется интегрированием дифференциального уравнения.

Общим решением дифференциального уравнения первого порядка у’ = f(x, у) в области D называется функция у = φ(x, C), обладающая следующими свойствами: 1) она является решением данного уравнения при любых значениях произвольной постоянной С, принадлежащих некоторому множеству; 2) для любого начального условия у(х0) = у0 такого, что (x0; y0) ∈ 0, существует единственное значение С = С0, при котором решение у = φ(x, C0) удовлетворяет заданному начальному условию.

Всякое решение у = φ(x, C0), получающееся из общего решения у = φ (x, C) при конкретном значении С = С0, называется частным решением.

Задача, в которой требуется найти частное решение уравнения y’ = f(х, у) удовлетворяющее начальному условию у(х0) = y0, называется задачей Коши.

Построенный на плоскости хОу график всякого решения у = φ(х) дифференциального уравнения называется интегральной кривой этого уравнения. Таким образом, общему решению у = φ(х, С) на плоскости хОу соответствует семейство интегральных кривых, зависящее от одного параметра – произвольной постоянной С, а частному решению, удовлетворяющему начальному условию y(x0) = y0, – кривая этого семейства, проходящая через заданную точку М0(x0; у0).

Если функция f(х, у) непрерывна и имеет непрерывную производную в области D, то решение дифференциального уравнения у’= f (х, у) при начальном условии у(х0) = у0 существует и единственно, т. е. через точку (x0; y0) проходит единственная интегральная кривая данного уравнения (теорема Коши).

Особым решением называется такое решение, во всех точках которого условие единственности не выполняется, т. е. в любой окрестности каждой точки (х; у) особого решения существуют по крайней мере две интегральные кривые, проходящие через эту точку.

Особые решения не получаются из общего решения дифференциального управления ни при каких значениях произвольной постоянной С (в том числе и при С = ± ∞).

Особым решением является огибающая семейства интегральных кривых (если она существует), т. е. линия, которая в каждой своей точке касается по меньшей мере одной интегральной кривой.

Например, общее решение уравнения записывается в виде у = sin (х + С). Это семейство интегральных кривых имеет две огибающие: у = 1 и у = -1, которые и будут особыми решениями.

2. Дифференциальные уравнения с разделяющимися переменными. Дифференциальное уравнение вида

относится к типу уравнений с разделяющимися переменными. Если ни одна из функций f1(x), f2(y), φ1(x), φ2(y) не равна тождественно нулю, то в результате деления исходного уравнения на f2 (x) φ1 (y) оно приводится к виду

Почленное интегрирование последнего уравнения приводит к соотношению

которое и определяет (в неявной форме) решение исходного уравнения. (Решение дифференциального уравнения, выраженное в неявной форме, называют интегралом этого уравнения.)

507. Решить уравнение х(у²-4)dx + y dy = 0.

△ Разделив обе части уравнения на у² – 4 ≠ 0, имеем

x² + ln|у² – 4| = ln|C|, или у² – 4 = Сe -λ²

Это общее решение данного дифференциального уравнения.

Пусть теперь у² – 4 = 0, т. е. у = ± 2. Непосредственной подстановкой убеждаемся, что у = ±2 – решение исходного уравнения. Но оно не будет особым решением, так как его можно получить из общего решения при С = 0. ▲

508. Найти частный интеграл уравнения у’ cos х = у / ln у, удовлетворяющий начальному условию y(0) = l.

△ Полагая , перепишем данное уравнение в виде

Проинтегрируем обе части уравнения:

, или

Используя начальное условие у = 1 при х = 0, находим С = 0. Окончательно получаем

509. Найти общий интеграл уравнения у’ = tg x tg y.

△ Полагая и разделяя переменные, приходим к уравнению ctg у dy = tg х dx. Интегрируя, имеем

, или ln|sin у| = -ln|cos x| + ln С.

Отсюда находим sin y = C/cos x, или sin y / cos x = С (общий интеграл). ▲

510. Найти частное решение дифференциального уравнения (l + x²)dy + y dx = 0 при начальном условии у(1) = 1.

△ Преобразуем данное уравнение к виду . Интегрируя, получим

, или ln |y| = – arctg x + С

Это и есть общий интеграл данного уравнения.

Теперь, используя начальное условие, найдем произвольную постоянную С; имеем ln 1 = — arctg 1 + С, т. е. С = π/4. Следовательно,

ln у = – arctg х + π/4,

откуда получаем искомое частное решение y = e π/4 – arctg x . ▲

Данко П. Е., Попов А. Г., Кожевникова Т. Я. Высшая математика в упражнениях и задачах… Ч. II. Стр. 117-119.

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Применения операционного исчисления

Решение задачи Коши для ОДУ с постоянными коэффициентами

Пример 1.

Решить однородное дифференциальное уравнение с постоянными коэффициентами. \begin &x»’+2x»+5x’=0,\\ &x(0)=-1, \,\, x'(0)=2, \,\, x»(0)=0. \end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: \begin &x(t) \risingdotseq X(p),\\ &x'(t) \risingdotseq pX(p)-x(0)=pX(p)+1,\\ &x»(t) \risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p)+p-2,\\ &x»'(t) \risingdotseq p^3X(p)-p^2x(0)-px'(0)-x»(0)=p^3X(p)+p^2-2p-0. \end Справа стоит $0$, изображение для него тоже $0$.

Запишем уравнение с изображениями (операторное уравнение). Оно уже будет алгебраическим, а не дифференциальным: \begin p^3X(p)+p^2-2p+2(p^2X(p)+p-2)+5(pX(p)+1)=0. \end И найдем из него неизвестное $X(p)$: \begin X(p)=-\frac. \end Используя теоремы, приемы, таблицы операционного исчисления получим оригинал: \begin X(p) \risingdotseq x(t)=-\displaystyle\frac15-\displaystyle\frac45 e^<-t>\mbox\,2t+\displaystyle\frac35e^<-t>\mbox\,2t. \end

Пример 2.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»-2x’-3x=e^<3t>,\\ x(0)=x'(0)=0. \end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: \begin &x(t) \risingdotseq X(p),\\ &x'(t) \risingdotseq pX(p)-x(0)=pX(p),\\ &x»(t) \risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p), \end Справа стоит $e^<3t>$, изображение равно $\displaystyle\frac<1>$.

Запишем операторное уравнение: \begin (p^2-2p-3)X(p)=\frac<1>. \end Находим $X(p)$: \begin X(p)=\frac<1><(p-3)^2(p+1)>. \end Используя, например, вторую теорему разложения, получим оригинал: \begin X(p) \risingdotseq \displaystyle\frac14\,te^<3t>-\displaystyle\frac<1><16>\,e^<3t>+\displaystyle\frac<1><16>\,e^<-t>. \end

Пример 3.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»+3x’=\mbox\,2t,\\ x(0)=2, \,\, x'(0)=0. \end

Пример 4.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»+x’=e^t,\\ x(1)=1, \,\, x'(1)=2. \end Так как начальные условия даны не при $t=0$, сразу применить теорему о дифференцировании оригинала мы не можем. Поставим вспомогательную задачу для функции $y(t)=x(t+1)$: \begin y»+y’=e^,\\ y(0)=1, \,\, y'(0)=2. \end Записываем операторное уравнение \begin (p^2Y(p)-p-2)+(pY(p)-1)=\displaystyle\frac. \end

Решаем полученное уравение: \begin Y(p)=\displaystyle\frac<(p-1)(p^2+p)>+\displaystyle\frac. \end \begin y(t)=\displaystyle\frac12e^+\left(\displaystyle\frac<2>-2\right)e^<-t>+(3-e). \end Со сдвигом на $1$ находим решение исходной задачи: \begin x(t)=y(t-1)=\displaystyle\frac12e^+\left(\displaystyle\frac<2>-2\right)e^<-t+1>+(3-e). \end

Решение задачи Коши для систем линейных ДУ

Пример 5.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’ = 2x+8, \\ &y’ = x+4y+1, \\ &x(0)=1,\, y(0)=0. \\ \end \right. \end

Запишем изображения: \begin \begin x(t) \risingdotseq X(p), & x'(t) \risingdotseq p\,X(p)-1, \\ y(t) \risingdotseq Y(p), & y'(t) \risingdotseq p\,Y(p). \end \end \begin 8 \risingdotseq \displaystyle\frac<8>

, \,\, 1 \risingdotseq \displaystyle\frac<1>

. \end

Операторная система уравнений принимает вид: \begin \left\ < \beginpX(p)-1 &= 2X(p)+\displaystyle\frac<8>

, \\ pY(p) &= X(p)+4Y(p)+\displaystyle\frac<1>

.\\ \end \right. \end

Решаем систему, находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac\risingdotseq x(t)=-4+5e^<2t>. \end \begin Y(p)=\displaystyle\frac<2p+6>\risingdotseq y(t)=\displaystyle\frac34-\displaystyle\frac52\,e^<2t>+\displaystyle\frac74\,e^<4t>. \end

Пример 6.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’ = 2x+8y, \\ &y’ = x+4y+1, \\ &x(0)=1,\, y(0)=0.\\ \end \right. \end

\begin \begin x(t) \risingdotseq X(p), & x'(t) \risingdotseq p\,X(p)-1, \\ y(t) \risingdotseq Y(p), & y'(t) \risingdotseq p\,Y(p),\\ 1 \risingdotseq \displaystyle\frac<1>

. &\\ \end \end

Операторная система уравнений принимает вид: \begin \left\ < \beginpX(p)-1 &= 2X(p)+8Y(p), \\ pY(p) &= X(p)+4Y(p)+\displaystyle\frac<1>

.\\ \end \right. \end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac\risingdotseq x(t)=\frac49-\frac43\,t+\frac59\,e^<6t>. \end \begin Y(p)=\displaystyle\frac<2(p-1)>\risingdotseq y(t)=-\displaystyle\frac<5><18>+\displaystyle\frac13\,t+\displaystyle\frac<5><18>\,e^<6t>. \end

Пример 7.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’-2x-4y = \mbox\, t, \\ &y’+x+2y = \mbox\,t, \\ &x(0)=0,\, y(0)=0.\\ \end \right. \end

Операторная система уравнений принимает вид: \begin \left\ < \begin(p-2)X(p)-4Y(p) &= \frac

, \\ X(p)+(p+2)Y(p) &= \frac<1>.\\ \end \right. \end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac<2>

+\displaystyle\frac<4>-\displaystyle\frac<2p+3>\risingdotseq x(t)=2+4t-2\,\mbox\,t-3\,\mbox\,t. \end \begin Y(p)=-\displaystyle\frac<2>+\displaystyle\frac<2>\risingdotseq y(t)=-2t+2\,\mbox\,t. \end

Решение ОДУ с помощью интеграла Дюамеля

Введем обозначения:
Уравнение: $x^<(n)>(t)+a_1\,x^<(n-1)>(t)+\ldots+a_n\,x(t)=f(t)$.
Начальные условия: $x(0)=x'(0)=\ldots=x^<(n)>=0$.
Неизвестная функция $x(t)$, имеющая изображение $X(p)$.
Сложная функция в правой части $f(t)$, имеющая изображение $F(p)$.

Запишем алгоритм решения.
1. Решается вспомогательное уравнение $$ y^<(n)>(t)+a_1\,y^<(n-1)>(t)+\ldots+a_n\,y(t)=1.$$ С учетом начальных условий левая и правые части уравнений будут иметь изображения: \begin \begin y(t) & \risingdotseq Y(p),\\ y'(t) & \risingdotseq p\,Y(p),\\ y»(t)& \risingdotseq p^2Y(p),\\ &\cdots\\ y^<(n)>(t)& \risingdotseq p^nY(p). \end \end Вспомогательное операторное уравнение запишем в виде: \begin Y(p)\cdot h(p) = \frac<1>

,\\ h(p)=p^n+a_1p^+\ldots+a_n. \end $$Y(p) \risingdotseq y(t).$$

2. Решается исходное уравнение. Левая часть уравнения совпадает с левой частью вспомогательного, поэтому операторное уравнение записывается так: $$ X(p)\cdot h(p) = F(p),$$ при этом $h(p)$, используя решение вспомогательного уравнения, можно записать в виде \begin h(p)=\frac<1>. \end Тогда $$ X(p) = F(p)\,pY(p).$$ Для нахождения $x(t)$ необходимо найти оригинал для $pY(p)F(p)$, то есть вычислить интеграл из формулы Дюамеля: $$ p F(p) Y(p) \risingdotseq y(0)\cdot f(t)+\int\limits_0^t f(\tau)\,y'(t-\tau)\,d\tau,$$ где $y(t)$ — уже найденное решение вспомогательного уравнения.

Пример 8.

Решить задачу Коши с помощью интеграла Дюамеля. \begin x»+2x’=\frac<1><1+e^<2t>>, \,\, x(0)=0, \,\, x'(0)=0. \end Решаем через интеграл Дюамеля в два этапа, как было описано выше.

2. Исходное уравнение в операторном виде: \begin (p^2+2p)X(p)=F(p). \end Правая часть этого уравнения такая же, как и для вспомогательного. Левую часть $\frac<1><1+e^<2t>>$ обозначим $f(t)$, ее изображение $F(p)$. Тогда \begin X(p)=\frac. \end Решая вспомогательное уравнение, мы находили: \begin (p^2+2p)Y(p)=\frac<1>

\,\, \Rightarrow \,\, p^2+2p=\frac<1>. \end Тогда \begin X(p)=\frac<\frac<1>>=pF(p)Y(p). \end

Теперь по формуле Дюамеля получаем: \begin X(p)=p F(p) Y(p) \risingdotseq x(t)=y(0)\cdot f(t)+\int\limits_0^t f(\tau)\,y'(t-\tau)\,d\tau, \end где $y(t)$ — уже найденное решение вспомогательного уравнения: \begin \begin & y(t)=-\frac14+\frac12t+\frac14 e^<-2t>,\\ & y(0)=0,\\ & y'(t-\tau)=\frac12-\frac12e^<-2(t-\tau)>. \end \end

Решение задачи Коши с правой частью, содержащей функцию Хэвисайда

Пример 9

Решить задачу Коши, когда правая часть дифференциального уравнения содержит составную функцию (выражаемую через функцию Хэвисайда). \begin \left\ < \begin&x»+x=\eta(t)-\eta(t-2), \\ &x(0)=0,\\ &x'(0)=0. \end \right. \end

Запишем изображения для левой и правой частей уравнения: \begin &x»+x \risingdotseq p^2\,X(p)+X(p),\\ &\eta(t)-\eta(t-2) \risingdotseq \frac<1>

-\frac>

. \end Для правой части, содержащей функцию Хэвисайда, воспользовались теоремой запаздывания.

Находим изображение для $\displaystyle\frac<1>$ с помощью теоремы об интегрировании оригинала: \begin &\frac<1>\risingdotseq \mbox\,t \,\, \Rightarrow\\ &\frac<1>\risingdotseq \int\limits_0^t\,\mbox\,\tau\,d\tau=-\mbox\,t+1. \end Тогда изображение для $\displaystyle\frac>$ по теореме запаздывания будет равно: \begin \frac>\risingdotseq (-\mbox\,(t-2)+1)\eta(t-2). \end

Решение заданного уравнения: \begin x(t)= (1-\mbox\,t)\eta(t)-(1-\mbox\,(t-2))\eta(t-2). \end

Пример 10

Решить задачу Коши, когда правая часть дифференциального уравнения задана графически (и выражается через функцию Хэвисайда). \begin \left\ < \begin&x»+4x=f(t). \\ &x(0)=0,\\ &x'(0)=0. \end \right. \end

Запишем аналитическое выражение для $f(t)$ с помощью функции Хэвисайда и найдем ее изображение: \begin &f(t)=2t\eta(t)-4(t-1)\eta(t-1)+2(t-2)\eta(t-2),\\ &F(p)=\frac<2>(1-2e^<-p>+e^<-2p>). \end Операторное уравнение имеет вид: \begin &X(p)(p^2+4)=\frac<2>(1-2e^<-p>+e^<-2p>)\,\, \Rightarrow\\ &X(p)=\frac<2>(1-2e^<-p>+e^<-2p>). \end

Для первого слагаемого найдем оригинал, разложив дробь на сумму простейших: \begin \frac<2>=\frac<1><2p^2>-\frac<2> <4(p^2+4)>\risingdotseq \frac12t-\frac14\,\mbox\,2t. \end Для остальных слагаемых воспользуемся теоремой запаздывания: \begin X(p)\risingdotseq x(t)= \frac12\left(t-\frac12\,\mbox\,2t\right)\eta(t)-\\ -\left((t-1)-\frac12\,\mbox\,2(t-1)\right)\eta(t-1)+\\ +\frac12\left((t-2)-\frac12\,\mbox\,2(t-2)\right)\eta(t-2). \end

Решение задачи Коши с периодической правой частью

Периодическую правую часть тоже очень удобно записывать с помощью функции Хэвисайда.

Пусть $f(t)$ — периодическая с периодом $T$ функция-оригинал. Обозначим через $f_0(t)$ функцию: \begin f_0(t)=\begin f(t),& 0 oplaplace/seminar5_2.txt · Последние изменения: 2021/05/28 18:23 — nvr


источники:

http://an-site.ru/kr/ko.htm

http://vmath.ru/vf5/oplaplace/seminar5_2