Линейным дифференциальным уравнением второго порядка называется уравнение

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Основные понятия о линейных дифференциальных уравнениях второго порядка и их решениях

Линейным дифференциальным уравнением второго порядка называется уравнение вида

где y — функция, которую требуется найти, а p(x) , q(x) и f(x) — непрерывные функции на некотором интервале (a, b) .

Если правая часть уравнения равна нулю ( f(x) = 0 ), то уравнение называется линейным однородным уравнением. Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю ( f(x) ≠ 0 ), то уравнение называется линейным неоднородным уравнением (смотрите отдельный урок).

В задачах от нас требуется разрешить уравнение относительно y» :

Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши.

Линейное однородное дифференциальное уравнение второго порядка и его решение

Рассмотрим линейное однородное дифференциальное уравнение второго порядка:

Если y 1 (x) и y 2 (x) — частные решения этого уравнения, то верны следующие высказывания:

1) y 1 (x) + y 2 (x) — также является решением этого уравнения;

2) Cy 1 (x) , где C — произвольная постоянная (константа), также является решением этого уравнения.

Из этих двух высказываний следует, что функция

также является решением этого уравнения.

Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка, то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?

Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y 1 (x) и y 2 (x) .

И это условие называется условием линейной независимости частных решений.

Теорема. Функция C 1 y 1 (x) + C 2 y 2 (x) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x) и y 2 (x) линейно независимы.

Определение. Функции y 1 (x) и y 2 (x) называются линейно независимыми, если их отношение является константой, отличной от нуля:

Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W(x) :

.

Если определитель Вронского не равен нулю, то решения — линейно независимые. Если определитель Вронского равен нулю, то решения — линейно зависимымые.

Пример 1. Найти общее решение линейного однородного дифференциального уравнения .

Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .

Так как определитель Вронского

не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

где p и q — постоянные величины.

На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность — нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.

Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами, нужно сначала решить так называемое характеристическое уравнение вида

которое, как видно, является обычным квадратным уравнением.

В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами, которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.

Корни характеристического уравнения — действительные и различные

Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 2. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и — вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Пример 3. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и — вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравения — вещественные и равные

То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 4. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Пример 5. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравнения — комплексные

То есть, , , . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 6. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет комплексные корни и . Соответственно и . Общее решение данного дифференциального уравения имеет вид

.

Пример 7. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет комплексные корни и . Соответственно и . Общее решение данного дифференциального уравения имеет вид

.

Решить линейное однородное дифференциальное уравнение с постоянными коэффициентами самостоятельно, а затем посмотреть решение

Пример 8. Решить линейное однородное дифференциальное уравнение

.

Пример 9. Решить линейное однородное дифференциальное уравнение

.

Линейным дифференциальным уравнением второго порядка называется уравнение

Линейным называется дифференциальное уравнение n -го порядка , если оно 1-ой степени относительно искомой функции y ( x ) и ее производных , то есть имеет вид:

Если коэффициент P 0 ( x ) ≠ 1, то на него можно поделить и после соответствующих переобозначений получить:

Уравнение (8.43) называется уравнением с переменными коэффициентами. Предположим, что в нем функции , непрерывны на интервале . Тогда для уравнения (8.43) на данном интервале имеет место задача Коши, сформулированная нами ранее.

Примечание. Частным случаем (8.43) является линейное дифференциальное уравнение 2-го порядка с переменными коэффициентами:

Если в уравнении (8.43) f ( x ) ≡ 0, то оно называется однородным, если f ( x ) ≠ 0, то неоднородным.

Теорема 8.3 (о структуре общего решения линейного неоднородного ДУ). Общее решение линейного неоднородного дифференциального уравнения представляет собой сумму общего решения соответствующего однородного и некоторого частного решения неоднородного уравнения . Запишем коротко:

Однородное дифференциальное уравнение, соответствующее неоднородному уравнению (8.43), имеет вид:

Пусть в уравнении (8.45) функции . Тогда оно принимает вид:

и называется линейным однородным дифференциальным уравнением n -го порядка с постоянными коэффициентами , где – функции, n раз дифференцируемые.

Рассмотрим решения уравнений (8.45) и (8.46). Обозначим полную совокупность их линейно независимых решений через . Тогда, по свойству решений однородного уравнения, их линейная комбинация также является решением уравнения (8.45) и (8.46), т о есть общее решение может быть записано в виде:

где ci – константы интегрирования.

Перейдем к конструированию функций . Какого они вида? Так как эти функции в уравнениях (8.45) и (8.46) n раз дифференцируемы, то их конструкция при дифференцировании не меняется. Это возможно в случае экспоненциального вида функций, то есть при

где , . Отсюда, линейная комбинация функций (8.48):

– также решение уравнений (8.45) и (8.46).

Рассмотрим одну из функций (8.48) – функцию y = e λx как решение для уравнения (8.46) с постоянными коэффициентами. Продифференцируем ее n раз:

Так как e λx 0 , то ( 8.50)

–алгебраическое уравнение n -ой степени относительно λ, называемое характеристическим уравнением для уравнения (8.46). Известно, что уравнение n -ой степени имеет равно n корней как действительных, так и комплексных, с учетом их кратности. Значит, характеристическое уравнение (8.50) дает нам n значений числа λ, ранее обозначенных нами через , которые при подстановке в (8.49) приводит нас к окончательному виду общего решения линейного однородного дифференциального уравнения (8.46) с постоянными коэффициентами.

Рассмотрим наиболее распространенный частный случай уравнения (8.46) – его аналог 2-го порядка:

Для данного уравнения характеристическое уравнение (8.50) принимает вид:

Уравнение (8.52) является квадратным относительно λ. В зависимости от дискриминанта D характеристического уравнения рассматривают три случая, приведенных в таблице 8.1.

Пример 8.17. Найти общее решение уравнений:

а) Составляем характеристическое уравнение λ 2 +2 λ – 15 = 0. Корнями этого уравнения будут λ 1 = –5 и λ 2 = 3 . Тогда, применяя (8.53), получаем общее решение: y=C 1 e – 5x +C 2 e 3x .

б) Составляем характеристическое уравнение λ 2 – 16 λ + 64 = 0.

Решая это уравнение, получим λ 1 = λ 2 = 8 . Так как корни равные, то, применяя (8.54), будем иметь:

в) Характеристическое уравнение λ 2 – 4 λ + 13 = 0 имеет комплексные корни λ 1 = 2+3 i и λ 2 = 2 –3 i . Положив в (8.55) α=2 и β = 3, получим общее решение: .

г) Характеристическое уравнение λ 2 +9 = 0 имеет корни λ 1;2 = ± 3 i . П олагая в (8.55) α=0 и β = 3, получим общее решение

Рассмотрим теперь линейное неоднородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами:

Теорема 8.4. Пусть задано линейное дифференциальное неоднородное уравнение второго порядка с постоянными коэффициентами и п равой частью специального вида

1. Если не является корнем характеристического уравнения соответствующего однородного уравнения, то частное решение уравнения (8.57) имеет вид:

где – многочлены общего вида (с неопределенными коэффициентами).

2. Если – корень характеристического уравнения кратности s , то частное решение уравнения (8.57) имеет вид:

– многочлены общего вида

Рассмотрим в таблице 8.2 некоторые случаи составления частного решения линейного неоднородного дифференциального уравнения (8.57) по специальному виду его правой части.

Пример 8.18. Найти общее решение уравнения .

Решение. Найдем общее решение соответствующего однородного ДУ: . Х арактеристическое уравнение λ 2 +2 λ +1 = 0 имеет корень λ1 = 1 кратности 2 (смотри таблицу 8.1). Значит, yo . o . = c 1 e x + c 2 x e x . Находим частное решение исходного уравнения. В нем правая часть x –4=( x –4) e 0 x есть формула вида P 1 ( x ) e 0 x , причем α= 0 не является корнем характеристического уравнения: α λ . Поэтому согласно формуле (8.58), частное решение y ч.н. ищем в виде y ч.н. = Q 1 ( x ) e 0 x , т.е. y ч.н. = Ax + B , где A и B – неопределенные коэффициенты. Тогда

Пример 8.19. Решить уравнение .

уравнения . Характеристическое уравнение λ 2 – 4 λ +13 = 0 имеет корни λ1 = 2+3 i , λ 2 = 2 –3 i (смотри таблицу 8.1). Следовательно, .

Находим частное решение y ч.н. . Правая часть неоднородного уравнения в нашем случае имеет вид

Отсюда, сравнивая коэффициенты при косинусе и синусе, имеем . Следовательно, A = 1, B = – 3 . Поэтому . И наконец, с учетом теоремы 8.3 получаем общее решение заданного линейного неоднородного ДУ в виде:

Пример 8.20. Найти частное решение уравнения , удовлетворяющее начальным условиям .

Решение . Находим общее решение однородного уравнения . Характеристическое уравнение λ 2 – λ – 2 = 0 имеет два корня λ 1 = –1 и λ 2 = 2 (смотри таблицу 8.1) ; тогда yo . o . = C 1 ex + C 2 e 2 x – общее решение соответствующего однородного ДУ.

В правой части заданного уравнения имеется показательная функция. Так как в данном случае α=2 совпадает с одним из корней характеристического уравнения, то частное решение следует искать в виде функции Axe 2 x . Таким образом, y ч.н. = Axe 2 x . Дифференцируя дважды это равенство, по лучим: . Подставим y ч.н. и ее производные в левую часть заданного уравнения и найдем коэффициент A : . Следовательно, частное решение y ч.н. = 3xe 2 x , общее решение

Используя начальные условия, определим значения произвольных постоянных C 1 и C 2 . Дифференцируя общее решение (8.60), получим:

Подставим в общее решение (8.60) значения x = 0 и y = 2, будем иметь 2 = C 1 + C 2 . Подставим в выражение для значения x = 0 и , будем иметь: 13 = – C 1 +2 C 2 +3 ; 10 = – C 1 + C 2 . Из этих уравнений составим систему , из которой находим: C 1 = – 2 и C 2 =4 . Таким образом, есть то частное решение, которое удовлетворяет заданным начальным условиям

Теорема 8.5 (о наложении решений). Если правая часть уравнения (8.56) представляет собой сумму двух функций: , а y 1 ч.н. и y 2 ч.н. – частные решения уравнений и соответственно, то функция

является частным решением данного уравнения

10.1. Дифференциальные уравнения второго порядка. Основные понятия теории

Определение 1. Дифференциальным уравнением Второго по­рядка называется уравнение вида

Где Х — независимая переменная, У — искомая функция, У’ и У» — соответственно ее первая и вторая производные.

Примеры дифференциальных уравнений второго порядка:

Будем рассматривать уравнения, которые можно записать в виде, разрешенном относительно второй производной:

Как и в случае уравнения первого порядка, решением урав­нения (10.1) называется функция У = φ(X), определенная на некотором интервале (А, B), которая обращает это уравнение в тождество. График решения называется Интегральной кривой. Имеет место теорема существования и единственности реше­ния уравнения второго порядка.

ТЕОРЕМА 1 (теорема Коши). Пусть функция f(x, у, у’) и ее частные производные и , непрерывны в некоторой обла­сти D пространства переменных (x, у, у’). Тогда для любой внутренней точки М0(х0, у0, у’0) этой области существует единственное решение уравнения (10.2), удовлетворяющее ус­ловиям:

Геометрический смысл этой теоремы (ее доказательство мы не приводим) заключается в том, что через заданную точку (X0, Y0) на координатной плоскости Оху проходит Единствен­ная интегральная кривая с заданным угловым коэффициентом Y0 касательной (рис. 10.1).

Условия (10.3) называются Начальными условиями, а зада­чу отыскания решения уравнения (10.2) по заданным началь­ным условиям называют Задачей Коши.

Общим решением уравнения (10.2) в некоторой области D Называется функция У = φ(х, С1, С2), если она является реше­нием этого уравнения при любых постоянных величинах С1 и C2, которые могут быть определены единственным образом при заданных начальных условиях (10.3). Частным решением Уравнения (10.2) называется общее решение этого уравнения при фиксированных значениях постоянных С1 и C2: У = φ(х, С10, С20).

Рассмотрим для пояснения уравнение У» = 0. Его общее решение получается при двухкратном интегрировании этого уравнения:

Где С1 и C2 — произвольные постоянные. Это решение пред ставляет собой семейство прямых, проходящих в произвольных направлениях, причем через каждую точку плоскости Охy Проходит бесконечное число таких прямых. Поэтому для выделения частного решения, проходящего через заданную точку 0, y0), следует задать еще и угловой коэффициент прямой, совпадающей в данном случае со своей касательной. Например, найдем частное решение, удовлетворяющее начальным условиям

Т. е. нужно найти прямую, проходящую через точку M (l, 2), с угловым коэффициентом, равным единице. Подстановка на­чальных условий в общее решение уравнения приводит к сис­теме двух линейных уравнений относительно постоянных С1 и C2

Откуда С1 = 1, C2 = 1. Таким образом, искомое частное реше­ние — это прямая У = х + 1.


источники:

http://www.sites.google.com/site/vyssaamatem/glava-viii-elementy-teorii-obyknovennyh-differencialnyh-uravnenij/viii-4-linejnye-differencialnye-uravnenia-vtorogo-poradka

http://matica.org.ua/metodichki-i-knigi-po-matematike/osnovy-matematiki-i-ee-prilozheniia-v-ekonomicheskom-obrazovanii-krass-m-s-chuprynov-b-p/10-1-differentcialnye-uravneniia-vtorogo-poriadka-osnovnye-poniatiia-teorii