Литература о решении квадратных уравнений

Литература о решении квадратных уравнений

    Главная
  • Список секций
  • Математика
  • Нестандартные способы решения квадратных уравнений

Нестандартные способы решения квадратных уравнений

Автор работы награжден дипломом победителя III степени

Введение

Математическое образование, получаемое в школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений.

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Сила теории уравнений в том, что она не только имеет теоретическое значение для познания естественных законов, но и служит конкретным практическим целям.

Актуальность темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, люди находят ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе в 9 классе, а также 10 и 11 и при сдаче экзаменов.

Цель: Изучить стандартные и нестандартные способы решения квадратных уравнений

Задачи

  1. Изложить наиболее известные способы решения уравнений
  2. Изложить нестандартные способы решения уравнений
  3. Сделать вывод

Объект исследования: квадратные уравнения

Предмет исследования: способы решения квадратных уравнений

Методы исследования:

  • Теоретические: изучение литературы по теме исследования;
  • Анализ: информации полученной при изучении литературы; результатов полученных при решении квадратных уравнений различными способами.
  • Сравнение способов на рациональность их использования при решении квадратных уравнений.

Глава 1.Квадратные уравнения и стандартные способы решения

1.1.Определение квадратного уравнения

Квадратным уравнением называется уравнение вида ax 2 + bx + c = 0, где х – переменная, а, b и с– некоторые числа, причем, а ≠ 0.

Числа а, b и с — коэффициенты квадратного уравнения. Число а называют первым коэффициентом, число b– вторым коэффициентом и число c – свободным членом.

Полное квадратное уравнение — это квадратное уравнение, в котором присутствуют все три слагаемых т.е. коэффициенты в и с отличны от нуля.

Неполное квадратное уравнение — это уравнение, в котором хотя бы один из коэффициентов в или, с равен нулю.

Определение 3. Корнем квадратного уравнения ах 2 + bх + с = 0 называют всякое значение переменной х, при котором квадратный трехчлен ах 2 + bх + с обращается в нуль.

Определение 4. Решить квадратное уравнение — значит найти все его

корни или установить, что корней нет.

Пример: – 7x + 3 =0

В каждом из уравнений вида a + bx + c = 0, где а ≠ 0, наибольшая степень переменной x – квадрат. Отсюда и название: квадратное уравнение.

Квадратное уравнение, в котором коэффициент при х2 равен 1, называют приведенным квадратным уравнением.

Пример

1.2.Стандартные способы решения квадратных уравнений

Решение квадратных уравнений с помощью выделения квадрата двучлена

Решение квадратного уравнения, в котором оба коэффициента при неизвестных и свободный член отличны от нуля. Такой способ решения квадратного уравнения называют выделением квадрата двучлена.

Разложение левой части уравнения на множители.

Решим уравнение х 2 + 10х — 24 = 0. Разложим левую часть на множители:

х 2 + 10х — 24 = х 2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

Следовательно, уравнение можно переписать так:(х + 12)(х — 2) = 0

Произведение множителей равно нулю, если по крайней мере, один из его множителей равен нулю.

Решение квадратного уравнения по формуле.

Дискриминант квадратного уравнения ax 2 + bx + c = 0 выражение b 2 – 4ас = D — по знаку которого судят о наличии у этого уравнения действительных корней.

Возможные случаи в зависимости от значения D:

  1. Если D>0, то уравнение имеет два корня.
  2. Если D= 0, то уравнение имеет один корень: х =
  3. Если D 2 + bx + c = 0.

Обозначим второй коэффициент буквой р, а свободный член буквой q:

х 2 + px + q = 0, тогда

Глава 2.Нестандартные способы решения квадратных уравнений

2.1.Решение с помощью свойств коэффициентов квадратного уравнения

Свойства коэффициентов квадратного уравнения – это такой способ решения квадратных уравнений, который поможет быстро и устно найти корни уравнения:

  1. Еслиа+ b+c=0, тоx1= 1,x2=

Пример. Рассмотрим уравнение х 2 +3х – 4= 0.

Проверим полученные корни с помощью нахождения дискриминанта:

Следовательно, если + b +c= 0, то x1 = 1, x2 =

  1. Еслиb =a+c, тоx1= -1,x2=

Пример. Рассмотрим уравнение 3х 2 +4х +1 = 0, a=3, b=4, c=1

Значит корнями этого уравнения являются –1 и . Проверим это с помощью нахождения дискриминанта:

D= b 2 – 4ас=4 2 – 4·3·1 = 16 – 12 = 4

2.2.Способ «переброски»

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а±b+c≠0, то используется прием переброски:

Применяя способ «переброски» получаем:

Таким образом, с помощью теоремы Виета получаем корни уравнения:

Однако корни уравнения необходимо поделить на 3 (то число, которое «перебрасывали»):

Значит, получаем корни: x1 = -1, x2 = .

2.3.Решение с помощью закономерности коэффициентов

  1. Если уравнениеax 2 + bx + c= 0, коэффициентb= (a2+1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 +10х +3 = 0.

Таким образом, корни уравнения: x1 = -3, x2 =

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=10 2 – 4·3·3 = 100 – 36 = 64

  1. Если уравнениеax 2 — bx + c= 0, коэффициентb= (a2+1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 — 10х +3 = 0.

Таким образом, корни уравнения: x1 = 3, x2 =

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=10 2 – 4·3·3 = 100 – 36 = 64

  1. Если уравнениеax 2 + bx — c= 0, коэффициентb= (a2-1), и коэффициентc=a, то его корни равны x1 = —a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 + 8х —3 = 0..

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=8 2 + 4·3·3 = 64 + 36 = 100

  1. Если уравнениеax 2 — bx — c= 0, коэффициентb= (a2-1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 — 8х —3 = 0..

Таким образом, корни уравнения: x1 = 3, x2 = —

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=8 2 + 4·3·3 = 64 + 36 = 100

2.4.Решение с помощью циркуля и линейки

Предлагаю следующий способ нахождения корней квадратного уравнения ах 2 + bх + с = 0 с помощью циркуля и линейки (рис.6 ).

Допустим, что искомая окружность пересекает ось

Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

1) построим точки S (центр окружности) и A(0; 1);

2) проведем окружность с радиусом SA;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис.8б) в точке В(х1; 0), где х1 — корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра AS SB, R> б) AS=SB, R= в) AS 2 — 2х — 3 = 0 (рис.8).

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA, где А (0; 1).

2.5.Геометрический способ решения квадратных уравнений.

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми.

Примеры.

1) Решим уравнение х 2 + 10х = 39.

В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.9).

Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

Площадь S квадрата ABCD можно представить как сумму площадей:

первоначального квадрата х 2 , четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25), т.е. S = х 2 + 10х + 25. Заменяя

х 2 + 10х числом 39, получим, что S = 39 + 25 = 64, откуда следует, что сторона квадрата ABCD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим:

2) А вот, например, как древние греки решали уравнение у 2 + 6у — 16 = 0.

Решение представлено на рис 10. где

у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой

один и тот же квадрат, а исходное уравнение у 2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = — 8 (рис. .

3) Решить геометрически уравнение у 2 — 6у — 16 = 0.

Преобразуя уравнение, получаем

На рис 11. находим «изображения» выражения у 2 — 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3. Значит, если к выражению у 2 — 6у прибавить 9, то получим площадь квадрата со стороной у — 3. Заменяя выражение у 2 — 6у равным ему числом 16,

получаем: (у — 3) 2 = 16 + 9, т.е. у — 3 = ± √25, или у — 3 = ± 5, где у1 = 8 и у2 = — 2.

Заключение

В ходе выполнения своей исследовательской работы я считаю, что с поставленной целью и задачами я справился, мне удалось обобщить и систематизировать изученный материал по выше указанной теме.

Нужно отметить, что каждый способ решения квадратных уравнений по-своему уникален. Некоторые способы решения помогают сэкономить время, что немаловажно при решении заданий на контрольных работах и экзаменах. При работе над темой я ставил задачу, выяснить какие методы являются стандартными, а какие нестандартными.

Итак, стандартные методы (используются чаще при решении квадратных уравнений):

  • Решение с помощью выделения квадрата двучлена
  • Разложение левой части на множители
  • Решение квадратных уравнений по формуле
  • Решение с помощью теоремы Виета
  • Графическое решение уравнений

Нестандартные методы:

  • Свойства коэффициентов квадратного уравнения
  • Решение способом переброски коэффициентов
  • Решение с помощью закономерности коэффициентов
  • Решение квадратных уравнений, с помощью циркуля и линейки.
  • Исследование уравнения на промежутках действительной оси
  • Геометрический способ

При этом следует заметить, что каждый способ обладает своими особенностями и границами применения.

Решение уравнений с использованием теоремы Виета

Достаточно легкий способ, дает возможность сразу увидеть корни уравнения, при этом легко находятся только целые корни.

Решение уравнений способом переброски

За минимальное количество действий можно найти корни уравнения, применяется совместно со способом теоремы Виета, при этом также легко найти только целые корни.

Свойства коэффициентов квадратного уравнения

Доступный метод для устного нахождения корней квадратного уравнения, но подходит только к некоторым уравнениям

Графическое решение квадратного уравнения

Наглядный способ решения квадратного уравнения, однако могут возникать погрешности при составлении графиков

Решение квадратных уравнений с помощью циркуля и линейки

Наглядный способ решения квадратного уравнения, но также могут возникать погрешности

Геометрический способ решения квадратных уравнений

Наглядный способ, похож на способ выделения полного квадрата

Решая уравнения разными способами, я пришел к выводу, что зная комплекс методов решения квадратных уравнений, можно решить любое уравнение, предлагаемое в процессе обучения.

При этом, следует заметить, что одним из более рациональных способов решения квадратных уравнений является способ «переброски» коэффициента. Однако самым универсальным способом можно считать стандартный способ решения уравнений по формуле, потому что данный способ позволяет решить любое квадратное уравнение, хотя иногда и за более длительное время. Также такие способы решения, как способ «переброски», свойство коэффициентов и теорема Виета помогаю сэкономить время, что очень важно при решении заданий на экзаменах и контрольных работах.

Думаю, что моя работа будет интересна учащимся 9-11 классов, а также тем, которые хотят научиться решать рационально квадратные уравнения и хорошо подготовиться к выпускным экзаменам. Также она будет интересна и учителям математики, за счет рассмотрения истории квадратных уравнений и систематизации способов их решения.

Список литературы

  1. Глейзер, Г.И. История математики в школе/ Г.И. Глейзер.-М.: Просвещение, 1982- 340с.
  2. Гусев, В.А. Математика. Справочные материалы/ В.А. Гусев, А.Г. Мордкович — М.: Просвещение, 1988, 372с.
  3. Ковалева Г. И., Конкина Е. В. «Функциональный метод решения уравнений и неравенств», 2014 г.
  4. Кулагин Е. Д. «300 конкурсных задач по математике», 2013 г.
  5. Потапов М. К. «Уравнения и неравенства. Нестандартные методы решения» М. «Дрофа», 2012 г.
  6. .Барвенов С. А «Методы решения алгебраических уравнений», М. «Аверсэв», 2006 г.
  7. Супрун В.П. «Нестандартные методы решения задач по математике» — Минск «Полымя», 2010г
  8. Шабунин М.И. «Пособие по математике для поступающих в вузы», 2005г.
  9. Башмаков М.И. Алгебра: учеб. для 8 кл. общеобразоват. учреждений. – М.: Просвещение, 2004. – 287с.
  10. Шаталова С. Урок – практикум по теме «Квадратные уравнения».- 2004.

Реферат «Решение квадратных уравнений различными способами.»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Муниципальное общеобразовательное учреждение

Средняя общеобразовательная школа № 1

Тема:Решение квадратных уравнений различными способами.

Выполнила: Ученица 8 Б класса

Пешкова Оксана Ильинична

Оглавление

Аннотация

Предметисследования: способы решения квадратных уравнений.

Цель: Изучить теоретические основы квадратных уравнений и способов их решении; рассмотреть применение данных способов решения квадратных уравнений на конкретных примерах.

1) Произвести анализ учебно–методической литературы по решению квадратных уравнений.

2) Произвести анализ различных способов решения квадратных уравнений

3)Изучить историю развития квадратных уравнений.

4) Изучить различные способы решения квадратных уравнений и апробировать материал на практике.

Гипотеза: любое квадратное уравнение можно решить всеми существующими способами

Обоснование: Уравнения — это наиболее объёмная тема всего курса математики. Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. В него вошли как известные нам из школьного курса алгебры способы решения квадратных уравнений, так и дополнительный материал.

Теоретические методы: изучение литературы по теме исследования

Анализ информации, полученной при изучении литературы; анализ результатов, получены при решении квадратных уравнений различными способами.

Сравнение способов на рациональность их использования при решении квадратных уравнений.

I .Введение

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее число задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).

Выбор этой темы основывался на том, что уравнения есть как в программе начальной, так и в каждом последующем классе общеобразовательных школ, лицеев, колледжей. Многие геометрические задачи, задачи по физике, химии и биологии решаются с помощью уравнений. Уравнения решали двадцать пять веков назад. Они создаются и сегодня – как для использования в учебном процессе, так и для конкурсных экзаменов в вузы, для олимпиад самого высокого уровня.

Квадратное уравнение представляет собой большой и важный класс уравнений, решающих как с помощью формул, так и с помощью элементарных функций.

В учебниках мы знакомимся с несколькими видами квадратных уравнений, и отрабатываем решение по формулам. Вместе с тем, современные научно – методические исследования показывают, что использование разнообразных методов и способов позволяет значительно повысить эффективность и качество изучения решений квадратных уравнений.

Выбор способа должен оставаться за учащимся. Каждый ученик должен уметь верно и рационально решать квадратные уравнения. Так как в некоторых случаях можно их решать устно, только для этого необходимо помнить алгоритм решения квадратных уравнений, который может пригодиться на экзамене ЕГЭ, при поступлении в ВУЗы и различных жизненных ситуациях.

Квадратное уравнение-это фундамент, на котором покоится величественное здание алгебры.

С помощью формул корней квадратных уравнений можно решить любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения.

Таким образом возникает необходимость изучения этих дополнительных способов решения. Все сказанное выше определяет актуальность темы выполненной работы.

II . Определение квадратного уравнения, его виды.

Определение:Квадратным уравнением называется уравнение вида

гдех-переменная, а, b и с-некоторые числа, причем,а≠0.

Если в квадратном уравнении ах 2 + bx + c =0 хотя бы один из коэффициентов b или с равен нулю, то такое уравнение называют неполным квадратным уравнением.

Неполные квадратные уравнения бывают трёх видов:

1)ах 2 +с=0, где с ≠ 0;

2) ах 2 + b х = 0, где b ≠ 0;

Квадратные уравнения  это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств.

III . Из истории квадратных уравнений.

1) Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

х 2 + х = , х 2 – х = 14

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

2) Квадратные уравнения в Индии.

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабахаттой. Другой индийский ученый, Брахмагупта ( VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

В уравнении коэффициенты, кромеа, могут быть отрицательными. Правило Брахмагупта по существу совпадает с нашим.

3) Квадратные уравнения в Европе XIII — XVII вв.

Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. Итальянским математиком Леонардо Фибоначчи. Этот объемный труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII .

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х 2 + b х = с, при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

IV . Различные способы решения квадратных уравнений.

В школьном курсе математике изучают формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Имеется десять способов решения квадратных уравнений. Подробно разберем каждые из них.

1) Разложение левой части уравнения на множители .

1. Решим уравнение х 2 + 10х – 24 = 0.

Разложим левую часть уравнения на множители:

х 2 + 10х – 24 = х 2 + 12х – 2х – 24 = х (х + 12) – 2 (х +12) = (х + 12)(х – 2).

Следовательно, уравнение можно переписать так:

Так как произведение равно нулю, то по крайне мере один из его множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х = 2, а также при х = — 12. это означает, что числа 2 и – 12 являются корнями уравнения х 2 + 10х – 24 = 0.

2) Метод выделения полного квадрата

Поясним этот метод на примере.

Решим уравнение х 2 + 6х – 7 = 0

Выделим в левой части полный квадрат. Для этого запишем выражение

х 2 + 6х в следующем виде:

х 2 + 6х = х 2 + 2· х ·3.

В полученном выражении первое слагаемое – квадрат числа х, а второе – удвоенное произведение х на 3. поэтому чтобы получить полный квадрат, нужно прибавить 3 2 , так как

х 2 + 2· х ·3 + 3 2 = (х + 3) 2 .

Преобразуем теперь левую часть уравнения

прибавляя к ней и вычитая 3 2. Имеем:

х 2 + 6х – 7= х 2 + 2· х ·3 + 3 2 – 3 2 – 7= (х + 3) 2 – 9– 7= (х + 3) 2 – 16.

Таким образом, данное уравнение можно записать так:

(х + 3) 2 –16 = 0, т.е. (х + 3) 2 = 16.

Следовательно, х=3=4,х1=1, или х +3= — 4 , х2 = – 7.

3) Решение квадратных уравнений по формуле

Умножим обе части уравнения

ах 2 + b х + с = 0, а ≠ 0,на 4а и следовательно имеем:

4а 2 х 2 + 4а b с + 4ас = 0.

((2ах) 2 + 2ах · b + b 2 ) – b 2 + 4ас = 0,

(2ах + b ) 2 = b 2 – 4ас,

а) 4х 2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b 2 – 4ас = 7 2 – 4· 4 ·3 = 49 – 48 = 1, D >два разных корня;

х = , х = ; х = , х1 = , х = , х2 = –1

Таким образом, в случае положительного дискриминанта,т. е. при b 2 – 4ас≥0 уравнение ах 2 + b х + с = 0 имеет два различных корня.

б) 4х 2 – 4х + 1 = 0,

Итак, если дискриминант равен нулю, т. е. = b 2 – 4ас= 0, тоуравнение ах 2 + b х + с = 0 имеет единственный корень, х =

в) 2х 2 +3х + 4 = 0, а =2, b = 3, с = 4, D = b 2 – 4ас= 9 – 4∙2∙4 =9 – 32 = — 13,

Итак, если дискриминант отрицателен, т. е. = b 2 – 4ас

4) Решение уравнений с использованием теоремы Виета(прямой и обратной)

а) Как известно, приведенное квадратное уравнение имеет вид

Его корни удовлетворяют теореме Виета, которая приа = 1 имеет вид

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если свободный член q приведенного уравнения (1) положителен ( q >0), то уравнение имеет два одинаковых по знаку корня и это зависит от второго коэффициента p .

Если p >0, то оба корня отрицательные, если p

х 2 – 3х + 2 = 0; х1 = 2 и х2 = 1, так как q = 2>0 и p = – 3

х 2 +8х + 7 = 0; х1 = – 7 и х2 = – 1, так как q = 7 > 0 и p = 8 >0.

б) Если свободный член q приведенного уравнения (1) отрицателен ( q p p >0.

х 2 + 4х – 5 = 0; х1 = – 5 и х2 = 1, так как q = – 5 p = 4 > 0;

х 2 – 8х – 9 = 0; х1 = 9 и х2 = – 1, так как q = – 9 p = – 8 >0.

б) Теорема Виета для квадратного уравнения

Справедлива теорема, обратная теореме Виета:

Если числа х1 и х2 таковы, что х12 = -р, х1х2 = q , то х1 и х2 – корни квадратного уравнения

Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней.

1. Решить уравнение: х 2 – 9х + 14 =0

Попробуем найти два числа х1 и х2 , такие, что

Такими числами являются 2 и 7. По теореме, обратной теореме Виета, они и служат корнями заданного квадратного уравнения.

2. Решить уравнение: х 2 +3х – 28 = 0

Попробуем найти два числа х1 и х2 , такие, что

Нетрудно заметить, что такими числами будут – 7 и 4. Они и являются корнями заданного уравнения.

5)Решение уравнений способом «переброски»

Рассмотрим квадратное уравнение

Умножая обе его части на а, получаем уравнение

Пусть ах= у, откуда х = ; тогда приходим к уравнению

равносильного данному. Его корни у1 и у2 найдем с помощью теоремы Виета. Окончательно получаем х1= и х1 = . При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Решим уравнение 2х 2 – 11х + 15 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

Согласно теореме Виета

6)Свойства коэффициентов квадратного уравнения.

А. Пусть дано квадратное уравнение

1.Если а+ b =0 (т.е. сумма коэффициентов уравнения равна нулю),то х1 =1, х2= .Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

Согласно теореме Виета

По условиюа + b + с = 0, откуда b = – а – с. Значит,

Получаем х1=1, х2=, что и требовалось доказать.

Доказательство. По теореме Виета

По условию а – b + с = 0, откуда b = а + с. Таким образом,

т.е. х1= 1 и х2 = , что и требовалось доказать.

1. Решим уравнение 345х 2 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то х1=1, х2= = .

2. Решим уравнение 132х 2 + 247х + 115 = 0

Решение. Т. к. а- b +с = 0 (132 – 247 +115=0), то

Б. Если второй коэффициент b = 2 k – четное число, то формулу корней

можно записать в виде

Решим уравнение 3х 2 14х + 16 = 0.

D = k 2 ac = (– 7) 2 – 3 · 16 = 49 – 48 = 1, D >0, два различных корня;

В. Приведенное уравнение

совпадает с уравнением общего вида, в которома = 1, p и c = q . Поэтому для приведенного квадратного уравнения формула корней

Формулу (3) особенно удобно использовать, когда p – четное число.

1. Решим уравнение х 2 14х – 15 = 0.

7)Графическое решение квадратного уравнения

Если в уравнении x 2 + px + q = 0перенести второй и третий члены в правую часть, то получим x 2 = – pxq .

Построим графики зависимостей у = х 2 и у = – pxq . (рис.1)

График первой зависимости – парабола,проходящая через начало координат.График второй зависимости – прямая.Возможны следующие случаи:прямая и парабола могут пересекаться в двух точках, абсциссыточек пересечения являются корнями квадратного уравнения;

— прямая и парабола могут касаться (только одна общая точка),т.е.уравнение имеет одно решение;

— прямая и парабола не имеют общих точек, т.е. квадратноеуравнение не имеет корней.

Учебный проект «Нестандартные приемы решения квадратных уравнений»

Разделы: Математика

Тема «Квадратные уравнения» является одной из самых актуальных. Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Они находят широкое применение в разных разделах математики.

В школьном курсе изучаются формулы корней квадратного уравнения, с помощью которых можно решать любые квадратные уравнения. Однако, имеются и другие приемы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения.

Проблемный вопрос: существуют ли кроме общепринятых приемов решения квадратных уравнений другие, которые позволяют быстро и рационально решать квадратные уравнения?

Гипотеза: установление связи между коэффициентами и корнями квадратного уравнения позволит найти эффективные приемы быстрого решения квадратного уравнения.

Цель: установив связь между коэффициентами и корнями квадратного уравнения, найти новые рациональные приемы решения уравнений

  • Изучить литературу по истории приемов решения квадратных уравнений
  • Обобщить накопленные знания о квадратных уравнениях и способах их решения.
  • Установить зависимость корней квадратного уравнения от его коэффициентов и найти эффективные приемы быстрого решения квадратного уравнения, в том числе с большими коэффициентами.
  • Сделать выводы.
  • Разработать дидактический материал для проведения практикума по решению квадратных уравнений с использованием новых приемов в помощь ученикам, увлеченным математикой и учителям, ведущим факультативные занятия.

Объект исследования: квадратные уравнения

Предмет изучения: методы и приемы решения квадратных уравнений, в том числе с большими коэффициентами

Глава 1.
Изучение литературы

Основной материал, связанный с изучением темы «Квадратные уравнения» находится в УМК под ред.С.А.Теляковского. В учебнике разобраны все основные вопросы по теме:

1. Определение и виды квадратных уравнений

2. Основные методы решения квадратных уравнений

Однако, дополнительный материал, связанный с историей вопроса о возникновении квадратных уравнений можно найти в «Энциклопедия по математике» «Занимательная математика», М., 2007. Способы решения задач на квадратные уравнения в полном объёме раскрыты в изданиях «Сборник элективных курсов» Волгоград, 2006 г.

Изученная литература позволила приобрести новые интересные знания по истории возникновения квадратного уравнения, приобрести опыт по решению различных квадратных уравнений и перейти к следующему этапу в исследовании – перенести полученные знания в нестандартную ситуацию.

Глава 2.
Изучение истории вопроса о квадратных уравнениях

Глава 3.
Обобщение имеющихся знаний о квадратных уравнениях и способах их решения

Глава 4.
Нестандартные приемы решения квадратных уравнений

Дидактический материал по применению нестандартных приемов решения квадратных уравнений.

1. Найди наиболее рациональным способом корни уравнения:

1978х 2 – 1984х + 6=0
(1; 6/1978)

4х 2 + 11х + 7 = 0
(-1; -7/4)

319х 2 + 1988х +1669=0
(-1; -1669/319)

2. Решить квадратные уравнения с большими коэффициентами

839х 2 – 448х -391=0
(1; -391/839)

345х 2 – 137х – 208=0
(1;.-208/345)

3. Используя полученные знания, установи соответствие:

1) х 2 +5х+6=0
2) 6х 2 -5х+1=0
3) 2х 2 -5х+3=0
4) 3х 2 -5х+2=0
5) х 2 -5х+6=0
6) 6х 2 +5х+1=0
7) 2х 2 +5х+2=0
8) 3х 2 +5х+2=0
1) 1/6;1/2
2) 1; 3/2
3) 1; 2/3
4) -2; -3
5) -1/3 ; -1/2
6) -1; -3/2
7) -1; -2/3
8) 2;3

Глава 5.
Анализ работы учащихся по решению квадратных уравнений нестандартными способами

Разработаны критерии оценки проведенного практикума:

  1. За каждое верно выполненное задание ставится 1 балл;
  2. Наиболее возможное количество набранных баллов-17
  3. Если ученик набирает менее

7 баллов, то выставляется оценка «2»
от 7 до 11 баллов «3»
от 12 до 15 баллов «4»
от 16-17 баллов «5»

Выполняли работу – 11человек

от 16-17 – 5человек (45%)
от 12-15– 6человек (55%)
Менее 12 – 0 человек

Средний балл – 4,45

Процент качества – 100%

Типичные ошибки, допущенные в работе связаны с невнимательностью учащихся.

Выводы по результатам проведения практикума

Успешно выполненная работа учащимися 8 класса, позволяет сделать следующие выводы:

  • нестандартные приемы решения квадратных уравнений заслуживают внимания;
  • позволяют экономить время решения, что обусловлено применением тестовой системы экзаменов.

В процессе работы над проектом, была создана система нестандартных приемов решения квадратных уравнений и разработан банк заданий, на основе которого проведена успешная апробация этих приемов.

Данный материал можно рекомендовать для внеклассных и факультативных занятий по математике. Учителя могут использовать его как методическое пособие при изучении темы «Решение квадратных уравнений», а также, для контроля за знаниями учащихся.

Материалом этого проекта могут воспользоваться и те, кто любит математику и хочет знать о математике больше.

  1. Выгодский М.Я. Справочник по элементарной математике. – М. государственное издательство физико-математической литературы, 1970.
  2. Галицкий М.Л., Гольдман М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов: учебное пособие для учащихся школ и классов с углубленным изучением математики:4-е изд.-М.: Просвещение, 1997.
  3. Макарычев Ю.Н., Миндюк Н.Г. Алгебра. Учебник для 8 класса. М., Просвещение, 2001.
  4. Макарычев Ю.Н., Миндюк Н.Г. Дополнительные главы к школьному учебнику. 8 класс М., Просвещение, 1996.
  5. Штейнгауз В.Г. Математический калейдоскоп. – М.: Бюро «Квантум», 2005.
  6. Энциклопедический словарь юного математика. – М.: Педагогика, 1985.


источники:

http://infourok.ru/referat-reshenie-kvadratnih-uravneniy-razlichnimi-sposobami-1683780.html

http://urok.1sept.ru/articles/630088