Логарифмические уравнения для поступающих в вузы

Логарифмические уравнения

Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

При этом 0,\;a> 0,\;a\neq 1′ alt=’b> 0,\;a> 0,\;a\neq 1′ />.

Обратим внимание на область допустимых значений логарифма:

Основное логарифмическое тождество:

Основные формулы для логарифмов:

(Логарифм произведения равен сумме логарифмов)

(Логарифм частного равен разности логарифмов)
(Формула для логарифма степени)

Формула перехода к новому основанию:

Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.

Все это пригодится нам в решении логарифмических уравнений.

Простейшие логарифмические уравнения

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.

Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение определено при 0,\;a> 0,\;a\neq 1′ alt=’b> 0,\;a> 0,\;a\neq 1′ />.

Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

2. Решите уравнение:

В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде . Дальше все просто.

3. Решите уравнение:

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.

4. Решите уравнение:

Область допустимых значений: 0.’ alt=’4+x> 0.’ /> Значит, -4.’ alt=’x> -4.’ />

Представим 2 в правой части уравнения как — чтобы слева и справа в уравнении были логарифмы по основанию 5.

Функция монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом -4′ alt=’x> -4′ />.

5. Решите уравнение:

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

0\\ x^<2>-4> 0\\ x^<2>+x=x^<2>-4 \end\right.\Leftrightarrow \left\ <\beginx^<2>+x> 0\\ x^<2>-4> 0\\ x=-4 \end\right.\Leftrightarrow x=-4′ alt=’\log _<8>\left ( x^<2>+x \right )=\log _<8>\left ( x^<2>-4 \right )\Leftrightarrow \left\ <\beginx^<2>+x> 0\\ x^<2>-4> 0\\ x^<2>+x=x^<2>-4 \end\right.\Leftrightarrow \left\ <\beginx^<2>+x> 0\\ x^<2>-4> 0\\ x=-4 \end\right.\Leftrightarrow x=-4′ />
Ответ: –4.

Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

Запишем решение как цепочку равносильных переходов.

0 \end\right.\Leftrightarrow \left\ <\begin\left (2^<\log _<2>\left ( 4x+5 \right )> \right )^<\frac<1><2>>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin\left ( 4x+5 \right )^<\frac<1><2>>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin\sqrt<4x+5>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin4x+5=81\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\beginx=19\\ x> -1\frac<1> <4>\end\right.’ alt=’2^<\log _<4>\left ( 4x+5 \right )>=9\Leftrightarrow \left\ <\begin2^\frac<<\log _<2>\left ( 4x+5 \right )>><2>=9\\ 4x+5> 0 \end\right.\Leftrightarrow \left\ <\begin\left (2^<\log _<2>\left ( 4x+5 \right )> \right )^<\frac<1><2>>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin\left ( 4x+5 \right )^<\frac<1><2>>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin\sqrt<4x+5>=9\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\begin4x+5=81\\ x> -1\frac<1> <4>\end\right.\Leftrightarrow \left\ <\beginx=19\\ x> -1\frac<1> <4>\end\right.’ />

Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.

ОДЗ:
0\\ x> 0\\ x\neq 1 \end\right.’ alt=’\left\ <\begin12-x> 0\\ x> 0\\ x\neq 1 \end\right.’ />

Теперь можно «убрать» логарифмы.

— посторонний корень, поскольку должно выполняться условие 0′ alt=’x> 0′ />.

8. Решите уравнение .

ОДЗ уравнения: 0′ alt=’x> 0′ />

Сделаем замену . Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.

Вернемся к переменной х:

Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.

Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.

Такое уравнение называется биквадратным. В него входят выражения и . Сделаем замену

Вернемся к переменной х. Получим:

. Мы нашли все корни исходного уравнения.

Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.

логарифм

Логарифмы, Шахмейстер А.Х., 2016

Логарифмы, Шахмейстер А.Х., 2016.

Данное пособие предназначено для углубленного изучения школьного курса математики, содержит большое количество разноуровневого тренировочного материала. В книге представлена программа для проведения элективных курсов в профильных и предпрофильных классах. Пособие адресовано широкому кругу учащихся, абитуриентов, студентов педагогических вузов, учителей.

Логарифм и его свойства. Логарифмические уравнения и неравенства, Методическое пособие, Захаров А.М., Крылова М.В., 2017

Логарифм и его свойства. Логарифмические уравнения и неравенства, Методическое пособие, Захаров А.М., Крылова М.В., 2017.

Работа представляет собой материалы для электронного образовательного курса «Логарифм и его свойства. Логарифмические уравнения и неравенства». Практическое значение данного пособия заключается в том, что этот электронный образовательный курс могут использовать учащиеся средних общеобразовательных школ, студенты средних специальных учебных заведений, студенты педагогических вузов и преподаватели. Курс содержит полный комплекс учебно-методических материалов, необходимых для освоения данной темы согласно учебному плану в рамках образовательной программы, и обеспечивает все виды работы в соответствии с программой дисциплины, включая практикум, средства д.ля контроля качества усвоения материала, методические рекомендации для обучающегося по изучению данной темы.

Задачи с параметрами и методы их решения, Крамор В.С., 2007

Задачи с параметрами и методы их решения, Крамор В.С., 2007.

Цель книги – научить школьников и абитуриентов ВУЗов самостоятельно решать задачи с параметрами и помочь прочно усвоить различные методы их решения.
Пособие содержит около 350 типовых задач с методическими указаниями и 300 задач для самостоятельного решения и ответы к ним.
Книга может быть использована при подготовке к выпускным экзаменам в средней школе, к сдаче ЕГЭ и вступительным экзаменам в ВУЗ.

Математика, Задачи с ответами и решениями, Пособие для поступающих в ВУЗы, Сергеев И.Н., 2004

Математика, Задачи с ответами и решениями, Пособие для поступающих в ВУЗы, Сергеев И.Н., 2004.

Пособие представляет собой сборник задач по школьному курсу математики (включая алгебру, геометрию и начала анализа) и предназначено для подготовки к вступительному экзамену по математике в любой ВУЗ. Специальный порядок задач, разработанный опытным преподавателем, обеспечивает максимальный обучающий эффект. При последовательном изучении материала знания абитуриента развиваются по спирали: пройдя очередной ее виток, он оказывается подготовленным по всем разделам математики на существенно более высоком уровне, чем раньше.
Содержатся варианты письменных вступительных экзаменов по математике в МГУ им. М. В. Ломоносова, проводившихся в 2002-2003 гг., а также программа по математике для поступающих в МГУ.
Для старшеклассников и учителей, абитуриентов и репетиторов.

Элементарные функции, Формулы, Таблицы, Графики, Рыбасенко В.Д., Рыбасенко И.Д., 1987

Элементарные функции, Формулы, Таблицы, Графики, Рыбасенко В.Д., Рыбасенко И.Д., 1987.

В справочнике приведены формулы, таблицы и графики элементарных функций, встречающихся в различных задачах физики и техники, в инженерно-технических вычислениях, статистике, экономике.
Справочник предназначен для широкого круга инженерно-технических работников, специалистов по техническим расчетам, преподавателей, студентов ВУЗов, втузов и учащихся техникумов.
Может использоваться как справочное пособие учащимися школ и ПТУ.

ЕГЭ 2009 — Математика — Справочник — Титаренко А.М., Третьяк Т.М, Виноградова Т.М.

Название: ЕГЭ 2009 — Математика — Справочник.

Автор: Титаренко А.М., Третьяк Т.М, Виноградова Т.М.

Справочник адресован выпускникам и абитуриентам для подготовки к единому государственному экзамену по математике. Весь теоретический материал школьного курса сгруппирован в соответствии с кодификатором элементов содержания по математике, на основе которого будут составлены контрольные измерительные материалы ЕГЭ 2009.
Издание будет полезно учителям математики, репетиторам и родителям, поможет эффективно организовать подготовку учащихся к единому государственному экзамену.

Задачи по элементарной математике — Ваховский Е.Б, Рывкин А.А — пособие подготовки в ВУЗы — 1969

Задачи по элементарной математике — Ваховский Е.Б, Рывкин А.А — пособие подготовки в ВУЗы — 1969

Книга предназначена для углубленного изучения программы средней школы. В ней содержится около 500 задач ( с указаниями и решениями), среди которых нет однотипных. В задачнике помимо традиционных представлены такие разделы как стереометрические задачи, решаемые на проекционном чертеже, иррациональный, логарифмические и трансцендентные неравенства, отыскание периодов тригонометрических функций и др. Некоторые главы снабжены небольшими теоретическими введениями, дополняющими школьные учебники.

Математика — Сборник тестов ЕГЭ 2009 — Клово А.Г., Мальцев Д.А.

МатематикаСборник тестов ЕГЭ 2009Клово А.Г., Мальцев Д.А.

Данный сборник содержит 18 тестов, составленных на основе демонстрационного варианта и плана работы ЕГЭ 2009. В предлагаемых тестах авторы отразили все вопросы и темы, которые войдут в ЕГЭ 2009. Тесты данного сборника попарно подобны, т. е. второй тест подобен первому, четвёртый — третьему и т. д. К каждому второму тесту приведены подробные решения заданий СЗ-С5, а также некоторых других. Для первого теста приведены подробные решения с комментариями ко всем заданиям, начиная с задания А1. Для автономной работы со сборником в него включён теоретический справочник, содержащий все те формулы и факты, знание которых действительно необходимо для успешной сдачи ЕГЭ 2009. Этот сборник будет очень полезен как тому, кто готовится к ЕГЭ 2009 самостоятельно, так и тому, кто готовится под руководством учителя.

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).


источники:

http://nashol.me/tag/logarifm/

http://100urokov.ru/predmety/urok-9-uravneniya-logarifmicheskie