Логарифмические уравнения егэ профиль 12 задание

Задание №12. Уравнения — профильный ЕГЭ по математике

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие промежутку

Упростим левую часть по формуле приведения.

Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Видим, что указанному отрезку принадлежат решения

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.

2. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

Степени равны, их основания равны. Значит, равны и показатели.

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку

Отметим на тригонометрическом круге отрезок и найденные серии решений.

Видим, что указанному отрезку принадлежат точки и из серии

Точки серии не входят в указанный отрезок.

А из серии в указанный отрезок входит точка

Ответ в пункте (б):

3. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Применим формулу косинуса двойного угла:

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси .

Ответ в пункте а)

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

5. а) Решите уравнение

б) Найдите корни, принадлежащие отрезку

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых

Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

Задания по теме «Логарифмические функции»

Открытый банк заданий по теме логарифмические функции. Задания B12 из ЕГЭ по математике (профильный уровень)

Задание №1132

Условие

Найдите наименьшее значение функции y=5x^2-12x+2\ln x+37 на отрезке \left[\frac35; \frac75\right].

Решение

Найдём производную исходной функции:

Определим нули производной: y'(x)=0;

Расставим знаки производной и определим промежутки монотонности исходной функции на рассматриваемом промежутке.

Из рисунка видно, что на отрезке \left[\frac35; 1\right] исходная функция убывает, а на отрезке \left[1; \frac75\right] возрастает. Таким образом, наименьшее значение на отрезке \left[\frac35; \frac75\right] достигается при x=1 и равно y(1)= 5\cdot 1^2-12\cdot 1+2 \ln 1+37= 30.

Ответ

Задание №1124

Условие

Найдите наибольшее значение функции y=4x^2-19x+11\ln x+715 на отрезке \left[\frac34; \frac54\right].

Решение

Найдём производную исходной функции:

Определим нули производной: y'(x)=0;

x_1\in \left[\frac34; \frac54\right],

x_2\notin \left[\frac34; \frac54\right].

Расставим знаки производной и определим промежутки монотонности исходной функции.

Из рисунка видно, что на отрезке \left[\frac34; 1\right] исходная функция возрастает, а на отрезке \left[1; \frac54\right] убывает. Таким образом, наибольшее значение на отрезке \left[\frac34; \frac54\right] достигается при x=1 и равно y(1)= 4\cdot 1^2-19\cdot 1+11 \ln 1+715= 700.

Ответ

Задание №1116

Условие

Найдите наименьшее значение функции y=7x-\ln(x+11)^7 на отрезке [-10,5;\,\,0].

Решение

ОДЗ: (x+11)^7>0, x+11>0, x>-11. На ОДЗ исходная функция примет вид: y=7x-7 \ln (x+11).

Найдём производную: y’=7-\frac<7>. Определим нули производной: 7-\frac<7>=0,

Расставим знаки производной и определим промежутки монотонности исходной функции.

Из рисунка видно, что на отрезке [-10,5; -10] исходная функция убывает, а на отрезке [-10; 0] возрастает. Таким образом, наименьшее значение на отрезке [-10,5; 0] достигается при x=-10 и равно y(-10)= 7\cdot (-10)-\ln (-10+11)^7= -70.

Ответ

Задание №952

Условие

Найдите наибольшее значение функции y=\ln(x+7)^9-9x на отрезке [-6,5; 0].

Решение

Так как на ОДЗ \ln(x+7)^9=9\ln(x+7), то исходная функция примет вид: y=9\ln(x+7)-9x. Найдём производную: y’=\frac<9>-9.

Определим нули производной

Расставим знаки производной и определим промежутки монотонности исходной функции

Из рисунка видно, что на отрезке [-6,5; -6] исходная функция возрастает, а на отрезке [-6; 0] — убывает. Таким образом, наибольшее значение на отрезке [-6,5; 0] достигается при x=-6 и равно y(-6)=\ln(-6+7)^9-9\cdot(-6)=54.

Ответ

Задание №336

Условие

Найдите наименьшее значение функции y=12x-\ln(12x)+100 на отрезке \left [\frac<1><36>; \frac34 \right ].

Решение

y’=0 при x=\frac<1><12>, причем y’ меняет знак в этой точке с «−» на «+» . Это означает, что x=\frac<1> <12>является точкой минимума.

y\left ( \frac<1> <12>\right )=12\cdot\frac<1><12>-\ln\left ( 12\cdot\frac<1> <12>\right )+100=1-0+100=101.

Ответ

Задание №125

Условие

Найдите наибольшее значение функции y=\ln(x+8)^3-3x на отрезке [−7,5; 0]

Решение

Выполним преобразования и вычислим производную.

Найдем точки экстремума, в которых производная функции обращается в нуль.

На числовой оси расставим знаки производной и посмотрим как ведет себя функция.

При переходе через точку x = −7 производная меняет знак с плюса на минус. Значит x = −7 – точка максимума функции.

Найдем наибольшее значение функции в точке x = −7 .

Логарифмические уравнения

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_<2>8 = 3$, т.к. $2^3 = 8;$

Особенно можно выделить три формулы:

Основное логарифмическое тождество:

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_b>0$, а если по разные, то $log_b 0$

Представим обе части уравнения в виде логарифма по основанию 2

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

Проверим найденные корни по условиям: $\<\table \x^2-3x-5>0; \7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Сделаем в обеих частях уравнения логарифмы по основанию $5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Далее представим обе части уравнения в виде логарифма по основанию $2$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.


источники:

http://academyege.ru/theme/logarifmicheskie-funkcii.html

http://examer.ru/ege_po_matematike/teoriya/logarifmicheskie_uravneniya