Логарифмические уравнения это какой класс

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок № 24. Логарифм. Свойства логарифмов.

Перечень вопросов, рассматриваемых в теме

1. Определение логарифма.

2. Основное логарифмическое тождество.

3. Свойства логарифмов.

Глоссарий по теме

Логарифмом положительного числа по основанию , называется показатель степени, в которую надо возвести чтобы получить .

Логарифмирование – это действие нахождения логарифма числа.

Основное логарифмическое тождество:

Свойства логарифмов. При , справедливы равенства:

— логарифм произведения: ;

— логарифм частного: ;

— логарифм степени: .

Колягин Ю. М., Ткачева М. В., Фёдорова Н.Е. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс. Базовый и углублённый уровни. – М.: Просвещение, 2014. – 384 с.

Открытые электронные ресурсы:

Теоретический материал для самостоятельного изучения

При решении простейших показательных уравнений не всегда можно найти точный ответ. Например, уравнение имеет корень 5, т. к. значит , В уравнении число 5 не является степенью 2, значит предыдущий способ решения не подходит. Нам известно, что уравнение имеет единственный корень. Посмотрим это на графике.

Абсцисса точки пересечения – единственное решение данного уравнения. Это число и называют логарифмом 5 по основанию 2.

Дадим определение логарифма.

Логарифмом положительного числа по основанию , называется показатель степени, в которую надо возвести чтобы получить .

Т. е. логарифм числа по основанию , есть некоторое число такое, что .

, т. к. выполнены все условия определения:

1) 216 > 0; 2) 6 > 0, 6 ≠ 1; 3) .

, т. к. выполнены все условия определения:

1) ; 2) 2 > 0, 2 ≠ 1; 3) .

Это действие называется логарифмированием.

Логарифмирование – это действие нахождения логарифма числа.

Существует краткая запись определения логарифма:

так называемое основное логарифмическое тождество. Его используют при вычислениях.

(Читают: 4 в степени логарифм 5 по основанию 4 равен 5)

(Читают: одна треть в степени логарифм 6 по основанию одна треть равен 6)

Решим несколько задач с использованием определения логарифма.

Задача 1. Вычислить .

Решение. Пусть тогда по определению логарифма Приведем левую и правую части к одному основанию. 27 = 3 3 , 81 = 3 4 , значит . Отсюда следует, что

Задача 2. Вычислить .

Решение. Для вычисления воспользуемся свойствами степеней: 1) , 2) и основным логарифмическим тождеством: .

.

Для решения более сложных задач потребуется знание свойств логарифмов. Рассмотрим их.

1. Логарифм произведения.

Логарифм произведения чисел по основанию равен сумме логарифма по основанию и логарифма по основанию .

2. Логарифм частного.

Логарифм частного чисел по основанию равен разности логарифма по основанию и логарифма по основанию .

3. Логарифм степени.

Логарифм числа по основанию равен произведению показателя и логарифма по основанию .

Важно! Свойства выполняются при ,

Примеры и разбор решения заданий тренировочного модуля

№ 1. Вычислите: .

Чтобы выполнить это задание нам понадобятся следующие определения и свойства:

  1. ;
  2. .

Представим в виде степени с рациональным показателем: . Далее воспользуемся свойством нахождения логарифма степени: . Вспоминаем таблицу квадратов: , значит , . Ответ: .

Чтобы выполнить это задание нам понадобятся следующие определения и свойства:

  1. ;
  2. ;
  3. ;
  4. .

.

Урок математики по теме «Решение логарифмических уравнений»

Презентация к уроку

Цели:

  1. повторить понятия логарифма числа и свойства логарифмов. Ознакомить и закрепить основные методы решения логарифмических уравнений, предупредить появления типичных ошибок.
  2. Предоставить каждому обучающему возможность проверить свои знания и повысить их уровень.
  3. Активизировать работу класса через разные формы работы.
  1. Развивать навыки самоконтроля.
  1. Воспитывать ответственное отношение к труду, воспитывать волю и настойчивость для достижение конечных результатов.
  2. создать эмоционально-положительный комфорт (ситуацию успеха)

Задачи урока: Ранее усвоенные знания применять в нестандартных ситуациях.

Знания, умения, навыки и качества, которые актуализируют, закрепят ученики в ходе урока:

  • знание понятия логарифма числа, логарифмической функции, свойств логарифмической функции;
  • знание основных приёмов решения логарифмических уравнений;
  • знание квадратичной функции и её свойств;
  • умение выполнять преобразования выражений, содержащих логарифмы;
  • умение применять свойства логарифмов при преобразовании выражений, содержащих логарифмы;
  • умение решать простейшие логарифмические уравнения и применение основных приёмов при решении более сложных уравнений;
  • умение решать квадратные уравнения;
  • использовать умение переносить ранее усвоенные знания в новую ситуацию.

Оборудование урока:

  • карточки с индивидуальными заданиями для самостоятельной работы;
  • карточки с заданиями для домашней работы;
  • справочный материал;
  • оценочный лист;
  • мультимедийный проектор, компьютер.

Формы работы:

  • фронтальная;
  • работа в парах;
  • индивидуальная.

Методы занятия: словесные и практические; контроль и обобщение знаний. При объяснении нового материала: объяснительно-иллюстративный (основное назначение – организация усвоения знаний);частично-поисковый (овладение элементарными навыками поиска знаний, учащиеся привлекаются к самостоятельному решению части проблемы).

План урока:

  1. Орг.момент.
  2. Устная работа (морской бой). Найди ошибки. Повторить основные формулы логарифмов.
  3. Программируемый контроль.
  4. Из истории математики.
  5. Изучение нового материала: «Логарифмические уравнения».
  6. Практическая работа: «Решение логарифмических уравнений».
  7. Решение проблемной ситуации (если возникнет).
  8. Итог урока.
  9. Рефлексия («Что знают», «Чего не знают», «Что получилось?», «Что нет?», «Что необходимо для этого повторить или выучить дома?»).
  10. Домашнее задание.

Ход урока

I. Организационный момент. (Приветствие)

Вступительное слово преподавателя.

Я приветствую вас на сегодняшнем уроке алгебры. Тема урока: “Решение логарифмических уравнений”. Сегодня мы повторим понятие логарифма числа, свойства логарифма, закрепим умения применять эти понятия при решении уравнений.

Эпиграфом урока являются слова:

Скажи мне – и я забуду,
Покажи мне – и я запомню,
Дай мне действовать самому – и я научусь.
Древнекитайская мудрость

На доске: дата, тема, план, эпиграф урока.

Раздаются карточки самостоятельных работ, оценочный лист, программированный контроль. (Приложение 4, 6, 7)

II. Актуализация опорных знаний.

  • Французский писатель Анатоль Франс (1844–1924) заметил: «Что учиться можно только весело. Чтобы переварить знания, надо поглощать их с аппетитом».

Последуем совету писателя: будем на уроке активны, внимательны, будем «поглощать» знания с большим желанием, ведь они скоро нам понадобятся для успешного выполнения контрольной работы, а в дальнейшем и успешной сдачи экзамена. И я хочу вам в этом помочь!

  • Устная работа.
  • Повторение изученного материала
  • Поднимите руку те, кто хотя бы раз играл в «Морской бой»? Ну, тогда вы легко справитесь со следующим заданием. На слайде вы видите таблицу. Работаем в парах: один называет по горизонтали число, а по вертикали букву (например, 2А). Другой – отвечает, тот кто отвечает правильно получает 1 балл и записывает его в оценочный лист. Игра будет проходить по цепочке. (Учитель по ключу следит за правильностью ответов и подает сигнал к продолжению игры).
  • Игра «Морской бой»
  • Работа с технологической картой. (Ответы записаны на доске. Поменяйтесь карточками и выполните проверку, за каждый правильный ответ поставьте по 1 баллу).

III. Программированный контроль. 7 минут

Самопроверка. Эталоны ответов раздать заранее. Выставить баллы в оценочный лист.

IV. Из истории математики.

Совершаем небольшой экскурс в историю математики.

На прошлом занятии мы с вами говорили о логарифмах, а кого из ученых вы можете назвать, которые являются основоположниками логарифмов?

Джон Непер – 1614 год – изобретение логарифма

Бюрги Йест (1552 — 1632) – швейцарский часовщик и мастер астрономических приборов, любитель математики. Именно Й. Бюрги составил первые таблицы логарифмов

1703 год – перевод таблиц на русский язык

Современное определение показательной, логарифмической и тригонометрических функций — заслуга Леонарда Эйлера, так же как и их символика. (Приложение 1-2)

задание в виде сообщения. Тема “Логарифм и музыка” (Приложение 3)

(Играет музыка. Приложение 5)

Алгебра – сестра гармонии, а композиторы – первые программисты

Преподаватель: Ребята, логарифмы применяются на уроках физики. Закон радиоактивного распада имеет вид m=mе.Формула Циолковского, связывающая скорость ракеты с ее массой v=v ln .

Тема “Звезды, шум и логарифмы” (Сообщение обучающегося)

Преподаватель: Более того, коэффициент звукоизоляции стен измеряется также с помощью логарифма, по формуле D=A lg .

V. Изучение нового материала.

Итак, тема нашего урока «Решение логарифмических уравнений», а цель его какая? Научиться решать логарифмические уравнения.

  • Что значит решить уравнение? (слайд)
  • Что такое корень уравнения?
  • Какие уравнения называют логарифмическими?

А если в уравнении неизвестное содержится под знаком логарифма, как его назвать?

(логарифмическое). Предложить ученикам дать определение логарифмического уравнения .

Определение: Логарифмическим уравнением называется уравнение, содержащее неизвестное под знаком логарифма.

  • Какое преобразование называют логарифмированием? (Действие нахождения логарифма числа называют логарифмированием).
  • Какое преобразование называют потенцированием? (Действие, которое заключается в нахождении числа по данному логарифму, называют потенцированием).

Помни!

При решении логарифмических уравнений часто приходится выполнять эти преобразования и свойства логарифмов (они у нас на доске, и мы их сейчас повторили)

Следует иметь в виду, что указанные операции могут привести к уравнениям, не равносильным данным.

Логарифмирование – это опасная операция, т.к. при ней может произойти потеря корней.

Пример: х 2 = 25 ; прологарифмируем обе части log5х 2 = log525;

х1,2 = ± 5. уравнения по основанию 5: 2 log5х = 2; log5х = 1; х = 5 потеря корня х = — 5

Избежать этой ошибки поможет нахождение ОДЗ уравнения.

При потенцировании потери корней не происходит, но могут получиться посторонние корни , которые легко обнаруживаются при подставке их в исходное уравнение .

Если при подстановке какого – либо корня в уравнение под знаком логарифма получается отрицательное число или нуль, то этот корень надо отбросить как посторонний.

При решении логарифмических уравнений часто используются следующие методы:

  1. Решение уравнений на основании определения логарифма, например, уравнение logaх = b (а > 0, а≠ 1, b>0) имеет решение х = a b
  2. Метод потенцирования, т.е. переход от уравнения logaf(х) = logaφ(х) к уравнению следствию f(х) = φ(х);
  3. Метод введения новых переменных;
  4. Метод логарифмирования , т.е. переход от уравнения f(х) = φ(х) к уравнению logaf(х) = logaφ(х)
  5. Применение основного логарифмического тождества
  6. Метод приведения логарифмов к одному и тому же основанию.

Сегодня мы рассмотрим несколько из них, а остальные на следующем занятии.

Изучение логарифмов в старшей школе

Понятие логарифма

При решении показательных уравнений удается представить обе части уравнения в виде степеней с одинаковыми основаниями и рациональными показателями. Так, например, при решении уравнения мы заменяем степенью и из равенства степеней с одинаковыми основаниями делаем вывод о равенстве показателей: х = −5/6. Однако, чтобы решить, казалось бы, более простое уравнение 2 х = 3, стандартных знаний оказывается недостаточно. Дело в том, что число 3 нельзя представить в виде степени с основанием 2 и рациональным показателем.

Действительно, если бы равенство , где m и n — натуральные числа, было верным, то, возведя его в степень n, мы должны были бы получить верное равенство 2 m = 3 n . Но последнее равенство неверно, так как левая его часть является четным числом, а правая — нечетным. Значит, не может быть верным и равенство .

С другой стороны, график непрерывной функции y = 2 x пересекается с прямой y = 3, и, значит, уравнение 2 x = 3 имеет корень. Таким образом, перед нами стоят два вопроса: «Как записать этот корень?» и «Как его вычислить?».

Показатель степени, в которую нужно возвести число a (a > 0, a ≠ 1), чтобы получить число b, называется логарифмом b по основанию a и обозначается logab.

Теперь мы можем записать корень уравнения 2 х = 3:

Равенства a x = b и x = logab, в которых число a положительно и не равно единице, число b положительно, а число x может быть любым, выражают одно и то же соотношение между числами a, b и x. Подставив в первое равенство выражение x из второго, получим основное логарифмическое тождество.

Понятие логарифма в методическом пособии

Задание

Решите уравнение: а) 2 x = 64; б) ; в) ; г) 4 x = 0; д) 7 x = −12.

После проверки ученикам предлагается ответить на вопрос, какое из заданий показалось им наиболее трудным. Вероятный ответ: 2 (в), так как в нем нужно было приводить дробь к степени числа 5. Затем школьникам предлагается высказать мнение о сравнительной с заданием 2 (в) трудности уравнения 2 x = 3. На первый взгляд кажется, что это уравнение проще, однако представить 3 в виде степени числа 2 школьникам не удается.

Дальше изучение нового материала проводится в соответствии с учебником. При этом в зависимости от уровня класса рассматривается или не рассматривается дополнительный материал о невозможности представления 3 в виде 2 r , где r = m/n.

После этого диалог с классом можно строить примерно так:

— Как вы думаете, имеет ли уравнение 2 x = 3 корень? Ответ обоснуйте. [Если построить график функции у = 2 x и провести прямую у = 3, то они пересекутся в одной точке, значит, уравнение имеет один корень.]
— Что можно сказать о корне уравнения a x = b, где а > 0 и а ≠ 1? При всех ли значениях b оно имеет корни?

Затем вводится определение логарифма числа b по основанию а и записывается основное логарифмическое тождество . При этом выписывание равенства происходит синхронно с повторным чтением определения теперь уже в обратном, по сравнению с учебником, порядке. Теперь можно записать корень уравнения 2 х = 3: х = loga3 и предложить школьникам серию самостоятельных работ.

Логарифмическая функция

Выразим x из равенства y = logax, получим x = a y . Последнее равенство задает функцию x = a y , график которой симметричен графику показательной функции y = a x относительно прямой y = x.

Показательная функция x = a y является монотонной, и, значит, разные значения y соответствуют разным значениям x, но это говорит о том, что y = logax, в свою очередь, является функцией x.

Показательная функция y = a x и логарифмическая функция y = logax являются взаимно обратными. Сравнивая их графики, можно отметить некоторые основные свойства логарифмической функции.

Свойства функции y = logax, a > 0, a ≠ 11:

  1. Функция y = logax определена и непрерывна на множестве положительных чисел.
  2. Область значений функции y = logax — множество действительных чисел.
  3. При 0 1 функция y = logax является возрастающей.
  4. График функции y = logax проходит через точку (1; 0).
  5. Ось ординат — вертикальная асимптота графика функции y = loga.

Решение логарифмических уравнений и неравенств на основе свойств логарифмической функции

Освобождаясь от внешнего логарифма, имеющего основание 3, мы ссылаемся на возрастание соответствующей логарифмической функции, то есть на то, что большему значению логарифма соответствует большее значение выражения, стоящего под его знаком. Однако следует иметь в виду, что если функцию y = log3 log0,5(2x + 1) считать логарифмической, то ее аргумент не переменная x, а все выражение log0,5(2x + 1). Если же все-таки рассматривать x как аргумент функции y = log3 log0,5(2x + 1), то эта функция окажется убывающей, так как при увеличении значения x увеличивается значение выражения 2x + 1, уменьшается значение выражения log0,5(2x + 1) и, соответственно, уменьшается значение самой функции.

Свойства логарифмов

Связь двух форм записи соотношения между числами a, b и x (речь о a x = b и x = logab) позволяет получить свойства логарифмов, основываясь на известных свойствах степеней.

Рассмотрим, например, произведение степеней с одинаковым основанием: a x a y . Пусть a x = b и a y = c. Перейдем к логарифмической форме: x = logab и y = logac, тогда bc = a log a b × a log a c = a log a b + log a c . От показательной формы равенства bc = a log a b + log a c перейдем к логарифмической форме:

Заметим, что в левой части формулы числа a и b могут быть отрицательными. Тогда формула будет выглядеть так:

Аналогично можно получить еще два свойства для логарифмов частного и степени.

  • логарифм произведения loga(bc) = loga|b| + loga|c|
  • логарифм частного
  • логарифм степени logabp= p loga|b|

Последнее свойство дает возможность вывести важную формулу, с помощью которой можно выразить логарифм с одним основанием через логарифм с другим основанием.

Пусть logab = x. Перейдем к показательной форме a x = b. Прологарифмируем это равенство по основанию c, т.е. найдем логарифмы с основанием c обеих частей этого равенства: logca x = logcb. Применяя к левой части свойство логарифма степени, получим x logca = logcb или , откуда .

Формула перехода от одного основания логарифма к другому

Полезно запомнить частный случай формулы перехода, когда одно из оснований является степенью другого:

Рассмотренные свойства и формула перехода «работают», конечно, только когда все входящие в них выражения имеют смысл.


источники:

http://urok.1sept.ru/articles/645814

http://rosuchebnik.ru/material/izuchenie-logarifmov-v-starshey-shkole-article/

Этапы урокаПримечание