Логарифмические уравнения с параметром урок

Занятие по программе элективного курса «Решение логарифмических, показательных уравнений, неравенств с параметрами»

Разделы: Математика

1. Введение

Если ставится задача для каждого значения a из некоторого множества A решить уравнение F(x,a) = 0 относительно x, то уравнение F(x,a) = 0 называется уравнением с параметром a, а множество A — областью изменения параметра.
Решить уравнение F(x,a) = 0 с переменной xи параметром a — это значит на подмножестве A множества действительных чисел решить семейство уравнений, получающихся из уравнения F(x,a) = 0 при всех значениях параметра a.
Ясно, сто написать каждое уравнение из бесконечного семейства уравнений невозможно. Тем не менее, каждое уравнение семейства должно быть решено. Сделать это можно, если, например, по некоторому целесообразному признаку разбить множество всех значений параметра на подмножества и решить затем заданное уравнение на каждом из этих подмножеств.
Для разбиения множества значений параметра на подмножества удобно воспользоваться теми значениями параметра, при которых, или при переходе через которые, происходят качественные изменения уравнения. Такие значения параметра будем называть контрольными.
Покажем на примерах, как эти значения параметра обнаруживаются, как с их помощью множество значений параметра разбивается на подмножества и как затем на каждом подмножестве решается заданное уравнение (система уравнений, неравенство).

2. Показательные и логарифмические уравнения

Рассмотрим решение показательных и логарифмических уравнений с параметром на конкретных примерах.

Найти все значения параметра a, при которых уравнение 21g(x + 3) = lg ax имеет единственный корень.

Данное уравнение эквивалентно системе:

Квадратное уравнение имеет единственное решение, если D = 0, то D = (a — 6) 2 – 4 • 9 = a 2 – 12a. D = 0 при a = 12. Если a = 0, то x = -3 ∉ (-3; +∞). Если a = 12, то .

При D > 0 квадратное уравнение может иметь два решения, а исходное уравнение – только одно из двух, если другое решение квадратного уравнения не удовлетворяет условию x > -3. Это возможно, если корни квадратного уравнения расположены по разные стороны от точки x = -3. Поэтому, если значение квадратного трехчлена в точке x > -3 отрицательно, т.е. (-3) 2 + 2(a — 6) + 9 x + 2 x — 1 — 5 = 0 имеет единственное решение?

Введем обозначение 2 x = t. Уравнение принимает вид: a ∙ t + 1 / t — 5 = 0, или a ∙ t 2 — 5t + 1 = 0. Если a = 0, то t = 1 / 5, 2 x = 1 / 5, x = -log2 5. Если a > 0, D = 0, т.е. 25 — 4a = 0, a = 25 / 4, то t = 2 / 5, 2 x = 2 / 5, x = log2 2 / 5 — единственное решение. Если a > 0, D x — 2a) = 0 имеет два различных решения.

Используя определение логарифма и свойства степеней, запишем уравнение в виде: 3 2x — 2a = 3 x . Введем новое переменное t = 3 x , тогда уравнение имеет вид t 2 — t — 2a = 0. Его дискриминант D = 1 + 8a. Квадратное уравнение имеет два решения, если оба корня квадратного уравнения положительные и удовлетворяют условию 9 x — 2a > 0, т.е. t 2 — 2a > 0. Из квадратного уравнения t 2 — 2a = t, поэтому условие выполняется при всех положительных t.

По теореме Виета для квадратного уравненияоткуда оба корня положительные при a 0, a ≠ 1, поэтому при a ≤ 0, a = 1 уравнение не определено и, следовательно, не имеет решения. Решим уравнение при a > 0, a ≠ 1. О.Д.З. x > 0, x ≠ 1. Прологарифмируем обе части уравнения по основанию a. . На основании свойств логарифмов получаем уравнение loga 2 x = 2 + loga x. Введем вспомогательную переменную t = loga x. Квадратное уравнение t 2 — t — 2 = 0 имеет корни t1 = 2, t2 = -1. Поэтому loga x = 2, loga x = -1, откуда x1 = a 2 , x2 = 1 / a. Оба корня принадлежат области допустимых значений при a > 0, a ≠ 1.

Решите следующие примеры самостоятельно.

1. Найти все значения параметра, при каждом из которых уравнение log2(4 xa) = x имеет два различных решения.

2. Найти все значения параметра, при каждом из которых уравнение log3(9 x + 9a 3 ) = x имеет два различных решения.

3. Решите уравнение.

4. Решите уравнение.

7. Решите уравнение lg 2 x — lg x + a = 0.

8. При каких значениях параметра уравнение 144 -∣2x — 1∣ — 2∙12 -∣2x — 1∣ + a = 0 имеет хотя ьы одно решение?

9. Решите уравнение.

10. Решите уравнение.
2..

4. При a ∈ (0; 1) ∪ (1; +∞) x = 3 / 4.

5. При, при m = 1 x = 1, при, при m ∈ [-1; 1] x ∈ ∅.
7. При a ∈ (-∞; 1 / 4].
9. При.

3. Показательные и логарифмические неравенства

Решите неравенство.

При a ≤ 0 и a = 0 показательная функция не определена, следовательно, неравенство не имеет решения.

Рассмотрим решение неравенства при a > 0, a ≠ 1.

Введем вспомогательную переменную a x = z.

Тогда неравенство принимает видили.

Решив алгебраическое неравенство методом интервалов, получим z ∈ (-∞; 1 / 2) ∪ (1; 2),

или.

Монотонность показательной функции зависит от величины основания, следовательно,

при a ∈ (0; 1) совокупность неравенств принимает вид,
а при a ∈ (1; +∞).

Ответ: при a ∈ (-∞; 0], a = 1 x ∈ ∅, при a ∈ (0; 1) loga 2 -loga 2, при a ∈ (1; +∞) 0 2 + 3 > 0 при всех x,

томожет быть только при.
Поэтому исходное неравенство эквивалентно системе:или.

Чтобы последнее неравенство из системы выполнялось при всех значениях x, необходимо условие отрицательности его правой части,

поэтомуили, следовательно a 3logx a.
2. При каких значениях параметра неравенствоверно при любом действительном значении x?

3. Решите неравенство a 4 ∙4 x — 33a∙2 x + 8 > 0.

4. Решите неравенство a 2 ∙4 2x + 1 — 65a∙4 x — 1 + 1 > 0.

5. Найдите все действительные значения параметра, при которых неравенство a∙9 x + 4(a — 1)∙3 x + a > 1 выполняется при всех x.

6. Найдите все действительные значения параметра, при которых неравенство 1 + log2(2x 2 + 2x + 7 / 2) ≥ log7(cx 2 + c) имеет хотя бы одно решение.

7. Найдите все действительные значения параметра, при которых неравенство 1 — log1 / 7(x 2 + 1) ≥ log7(ax 2 + 4x + a) справедливо при всех x.

8. Решите неравенство a 2 — 2∙4 x + 1 — a∙2 x + 1 > 0.

Показательные и логарифмические уравнения с параметром

Показательные уравнения c параметром

Как правило, чтобы решить показательные уравнения с параметром нужно привести их квадратному или линейному уравнению. Обычно это можно сделать при помощи метода замены переменных. Но надо быть внимательным – при замене \(t=a^x\), новая переменная \(t\) всегда положительна.

Найдите все значения параметра \(a\), при которых уравнение \((a+1)(4^x+4^<-x>)=5\) имеет единственное решение.

Заметим, что \(a+1 > 0\), так как \(4^x+4^ <-x>> 0\). Сделаем замену \(t=4^x\); \(t > 0\) $$ (a+1)(t+\frac<1>)=5;$$ $$(a+1)t^2-5t+a+1=0$$ $$_<1,2>=\frac<5±\sqrt<25-4(a+1)^2>> <2(a+1)>.$$
Уравнение будет иметь единственное решение, если $$D=25-4(a+1)^2=0 $$ $$a+1=±\frac<5><2>$$ \(a=-3.5 -\) не подходит;
\(a=1.5;\)

Логарифмические уравнения с параметром

Чтобы решить логарифмические уравнения, надо обязательно записывать ОДЗ, а затем провести необходимые равносильные преобразования или сделать замену, чтобы свести уравнение к более простому.

Решите уравнение \(log_a (x^2)+2log_a (x+1)=2\) для каждого \(a\).

Перейдем от суммы логарифмов к их произведению:

При условии, что \(1-4a≥0 ⇔ 0 0\).

При условии, что $$ 1+4a>0 ⇔ a>0$$ корень $$x=\frac<1><2>-\frac<\sqrt<1+4a>><2>$$ не подходит, так как \( x>0.\)

Найдите все значения параметра \(a\), при которых уравнение \(log_4 (16^x+a)=x\) имеет два действительных и различных корня.

При помощи равносильного преобразования приведем наше уравнение к виду:

Сделаем замену: \(t=4^x>0 ⇔ t^2-t+a=0,\)

Полученное квадратное уравнение должно иметь корни \(0 0, \\D≥0, \\D>0, \\ _<0>>0; \end $$ $$ \begin a>0, \\1-4a>0, \\ 1/2>0; \end $$ $$ \begin a>0, \\a

Логарифмы с параметрами

В России появится перечень разрешённых электронных образовательных ресурсов

К 1 января в России появится перечень электронных ресурсов, разрешенных к использованию в школах. Об этом в интервью «Российской газете» рассказала глава Комитета Госдумы по просвещению Ольга Казакова.

Госслужащих заставят сдавать экзамен по русскому языку

Чиновников скоро заставят сдавать экзамен на знание русского языка и умение говорить на нем правильно, красиво, без канцелярита. Об этом сообщила ректор Государственного института русского языка имени Пушкина, член Совета при президенте РФ по русскому языку Маргарита Русецкая.

Пробный вариант ЕГЭ-2022 по русскому языку

Соответствует демоверсии ЕГЭ-2022. Вариант составлен на основе заданий открытого банка ФИПИ.


источники:

http://sigma-center.ru/logarithm_equation_parametr

http://4ege.ru/matematika/55206-logarifmy-s-parametrami.html