Логарифмы зачет номер 3 решите уравнения

Зачет по математике в 11 классе по теме «Решение простейших показательных и логарифмических уравнений «

Просмотр содержимого документа
«Зачет по математике в 11 классе по теме «Решение простейших показательных и логарифмических уравнений «»

Зачет по подготовки к ЕГЭ

(Разработала Трофимова Т. Н. использована сайт Решу ЕГЭ)

Решение простейших показательных и логарифмических уравнений.

Задания 6 на ЕГЭ по математике это задачи на проверку навыков умения решать уравнения. Чаще встречаются логарифмические, и показательные уравнения.

Для решения заданий данной группы необходимо знать:

1)Формулы сокращённого умножения.
2) Формулы степени и корня.
3) Понятие логарифма, основное логарифмическое тождество, свойства логарифма.

Решение показательных уравнений.

Для решения показательных уравнений знать свойства показателей степени.

Перечислим свойства показателей степени:

Нулевая степень любого числа равна единице.

Следствие из данного свойства:

Показательным уравнением называется уравнение содержащее переменную в показателе, то есть это уравнение вида:

f(x) выражение, которое содержит переменную

Методы решения показательных уравнений

1. В результате преобразований уравнение можно привести к виду:

Тогда применяем свойство:

2. При получении уравнения вида a f(x) = b используется определение логарифма, получим:

3. В результате преобразований можно получить уравнение вида:

Далее применяем свойство логарифма степени:

Выражаем и находим х.

В задачах вариантов ЕГЭ достаточно будет использовать первый способ.

Найдите корень уравнения 4 1–2х = 64.

Необходимо сделать так, чтобы в левой и правой частях были показательные выражения с одним основанием. 64 мы можем представить как 4 в степени 3. Получим:

Основания равны, можем приравнять показатели:

Найдите корень уравнения 3 х–18 = 1/9.

Значит 3 х-18 = 3 -2

Основания равны, можем приравнять показатели:

Найдите корень уравнения:

Найдите корень уравнения:

Представим дробь 1/64 как одну четвёртую в третьей степени:

Теперь можем приравнять показатели:

Решение логарифмических уравнений.

Достаточно знать и понимать основное логарифмическое тождество, знать свойства логарифма. Обратите внимание на то, то после решения ОБЯЗАТЕЛЬНО нужно сделать проверку — подставить полученное значение в исходное уравнение и вычислить, в итоге должно получиться верное равенство.

Логарифмом числа a по основанию b называется показатель степени, в который нужно возвести b, чтобы получить a.

(a

Основное логарифмическое тождество:

log39 = 2, так как 3 2 = 9

Частные случаи логарифмов:

Найдите корень уравнения: log3(4–x) = 4

Используем основное логарифмическое тождество.

Так как logab = x b x = a, то

Найдите корень уравнения: log4(x + 3) = log4(4x – 15).

Если logca = logcb, то a = b

Найдите корень уравнения log2 (4 – x) = 2 log2 5.

Преобразуем правую часть. воспользуемся свойством:

Если logca = logcb, то a = b

Решите уравнение log2(2 – x) = log2(2 – 3x) +1.

Необходимо с правой стороны уравнения получить выражение вида:

Представляем 1 как логарифм с основанием 2:

Далее применяем свойство:

Если logca = logcb, то a = b, значит

Задания для решения на занятии:

Найдите корень уравнения:

Найдите корень уравнения: .

Найдите корень уравнения : .

Найдите корень уравнения: log2 (4 – x) = 7

Найдите корень уравнения: log5(5 – x) = 2 log5 3

Найдите корень уравнения log5(x 2 + x) = log5(x 2 + 10).

Найдите корень уравнения log5(7 – x) = log5(3 – x) +1

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение логарифмических уравнений.

Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение. Программа для решения логарифмического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> ln(b) или log(b) или log(e,b) — натуральный логарифм числа b
log(10,b) — десятичный логарифм числа b
log(a,b) — логарифм b по основанию a

Введите логарифмическое уравнение
Решить уравнение

Немного теории.

Логарифмическая функция. Логарифмы

Задача 1. Найти положительный корень уравнения x 4 = 81
По определению арифметического корня имеем \( x = \sqrt[4] <81>= 3 \)

Задача 2. Решить уравнение 3 x = 81
Запишем данное уравнение так: 3 x = 3 4 , откуда x = 4

В задаче 1 неизвестным является основание степени, а в задаче 2 — показатель степени. Способ решения задачи 2 состоял в том, что левую и правую части уравнения удалось представить в виде степени с одним и тем же основанием 3. Но уже, например, уравнение 3 x = 80 таким способом решить не удаётся. Однако это уравнение имеет корень. Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.
Уравнение a x = b, где a > 0, \( a \neq 1 \), b > 0, имеет единственный корень. Этот корень называют логарифмом числа b no основанию a и обозначают logab
Например, корнем уравнения 3 x = 81 является число 4, т.е. log381 = 4.

Определение. Логарифмом положительного числа b по основанию a, где a > 0, \( a \neq 1 \), называется показатель степени, в которую надо возвести число a, чтобы получить b

log77 = 1, так как 7 1 = 7

Определение логарифма можно записать так:

Действие нахождения логарифма числа называют логарифмированием.
Действие нахождения числа по его логарифму называют потенцированием.

Вычислить log64128
Обозначим log64128 = х. По определению логарифма 64 x = 128. Так как 64 = 2 6 , 128 = 2 7 , то 2 6x = 2 7 , откуда 6x = 7, х = 7/6.
Ответ log64128 = 7/6

Вычислить \( 3^ <-2\log_3 5>\)
Используя свойства степени и основное логарифмическое тождество, находим

Решить уравнение log3(1-x) = 2
По определению логарифма 3 2 = 1 — x, откуда x = -8

Свойства логарифмов

При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются различные свойства логарифмов. Рассмотрим основные из них.

Пусть а > 0, \( a \neq 1 \), b > 0, c > 0, r — любое действительное число. Тогда справедливы формулы:

Десятичные и натуральные логарифмы

Для логарифмов чисел составлены специальные таблицы (таблицы логарифмов). Логарифмы вычисляют также с помощью микрокалькулятора. И в том и в другом случае находятся только десятичные или натуральные логарифмы.

Определение. Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут
lg b вместо log10b

Определение. Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное число, приближённо равное 2,7. При этом пишут ln b вместо logeb

Иррациональное число e играет важную роль в математике и её приложениях. Число e можно представить как сумму:
$$ e = 1 + \frac<1> <1>+ \frac<1> <1 \cdot 2>+ \frac<1> <1 \cdot 2 \cdot 3>+ \dots + \frac<1> <1 \cdot 2 \cdot 3 \cdot \dots \cdot n>+ \dots $$

Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить логарифмы чисел по любому основанию.
Для этого используется формула замены основания логарифма:

Следствия из формулы замены основания логарифма.
При c = 10 и c = e получаются формулы перехода к десятичным и натуральным логарифмам:
$$ \log_a b = \frac<\lg b> <\lg a>, \;\; \log_a b = \frac<\ln b> <\ln a>$$

Логарифмическая функция, её свойства и график

В математике и её приложениях часто встречается логарифмическая функция
y = logax
где а — заданное число, a > 0, \( a \neq 1 \)

Логарифмическая функция обладает свойствами:
1) Область определения логарифмической функции — множество всех положительных чисел.

2) Множество значений логарифмической функции — множество всех действительных чисел.

3) Логарифмическая функция не является ограниченной.

4) Логарифмическая функция y = logax является возрастающей на промежутке \( (0; +\infty) \), если a > 1,
и убывающей, если 0 1, то функция y = logax принимает положительные значения при х > 1,
отрицательные при 0 1.

Ось Oy является вертикальной асимптотой графика функции y = logax

Отметим, что график любой логарифмической функции y = logax проходит через точку (1; 0).
При решении уравнений часто используется следующая теорема:

Логарифмическая функция y = logax и показательная функция y = a x , где a > 0, \( a \neq 1 \), взаимно обратны.

Логарифмические уравнения

Решить уравнение log2(x+1) + log2(x+3) = 3
Предположим, что х — такое число, при котором равенство является верным, т.е. х — корень уравнения. Тогда по свойству логарифма верно равенство
log2((x+1)(x+3)) = 3
Из этого равенства по определению логарифма получаем
(x+1)(x+3) = 8
х 2 + 4х + 3 = 8, т.е. х 2 + 4x — 5 = 0, откуда x1 = 1, х2 = -5
Так как квадратное уравнение является следствием исходного уравнения, то необходима проверка.
Проверим, являются ли числа 1 и -5 корнями исходного уравнения.
Подставляя в левую часть исходного уравнения х = 1, получаем
log2(1+1) + log2(1+3) = log22 + log24 = 1 + 2 = 3, т.е. х = 1 — корень уравнения.
При х = -5 числа х + 1 и х + 3 отрицательны, и поэтому левая часть уравнения не имеет смысла, т.е. х = -5 не является корнем этого уравнения.
Ответ x = 1

Решить уравнение lg(2x 2 — 4x + 12) = lg x + lg(x+3)
По свойству логарифмов
lg(2x 2 — 4x + 12) = lg(x 2 + 3x)
откуда
2x 2 — 4x + 12 = x 2 + 3x
x 2 — 7x + 12 = 0
x1 = 3, х2 = 4
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 3, х2 = 4

Решить уравнение log4(2x — 1) • log4x = 2 log4(2x — 1)
Преобразуем данное уравнение:
log4(2x — 1) • log4x — 2 log4(2x — 1) = 0
log4(2х — 1) • (log4 x — 2) = 0
Приравнивая каждый из множителей левой части уравнения к нулю, получаем:
1) log4 (2х — 1) = 0, откуда 2х — 1 = 1, х1 = 1
2) log4 х — 2 = 0, откуда log4 = 2, х2 = 16
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 1, х2 = 16

Решение логарифмических уравнений

Данный калькулятор позволяет найти решение логарифмических уравнений.
Логарифмическое уравнение – это уравнения, в которых переменная величина находится под знаком логарифма. Логарифмическая функция всегда монотонна и может принимать любые значения. Кроме того, переменный аргумент логарифма должен быть больше нуля и переменное основание логарифма должно быть положительным и не равным единице.

При решении логарифмических уравнений зачастую необходимо логарифмировать или потенцировать обе части уравнения. Логарифмировать алгебраическое выражение — выразить его логарифм через логарифмы отдельных чисел, входящих в это выражение. Потенцирование – нахождение выражения, от которого получен результат логарифмирования.

Для того чтобы найти корни логарифмического уравнения, нужно ввести это уравнение в ячейку и нажать на кнопку «Вычислить». В ответе отображаются корни уравнения и график логарифмической функции.

Калькулятор поможет найти решение логарифмических уравнений онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Основные функции

  • : x^a


источники:

http://www.math-solution.ru/math-task/logarithmic-equality

http://allcalc.ru/node/668