Mathcad решение уравнений и их систем

Решение систем уравнений в MathCad

Для решения уравнений в Mathcad можно воспользоваться двумя способами. Эти способы были частично рассмотрены в разделе «Решение уравнений»:

Использование метода Given — Find:

В рабочем поле mathcad записываем слово Given. Это служебное слово. Оно подключает определенные программные модули mathcad для обработки исходных данных, необходимых для решения системы уравнений численными методами.

Затем указывается начальное приближение для искомых переменных. Это нужно для увеличения скорости и точности решения системы. Если начальное приближение не задать, то mathcad по умолчанию примет его равным нулю для всех переменных, при этом, если окажется, что система имеет несколько решений, то есть риск не определить все корни. Поэтому лучше всегда задавать приближение

Рис. 1. Ввод исходных данных в поле mathcad

Далее вводятся уравнения. Их можно записать в явном или неявном виде. Само уравнение набирается с клавиатуры вручную с использованием панели Calculator. Из этой панели можно взять основные математические операции: дроби, тригонометрию, факториалы и прочее. Уравнение нужно записывать с использованием логического символа «ровно». На панели Boolean он выделен жирным шрифтом (см. рис. 2)

Рис. 2. Панели Boolean и Calculator

Когда уравнения записаны вводится функция Find(x, y, z. ) (где х, y, z. — переменные). Это функция, которая возвращает результат решения системы. Значение функции Find() можно присвоить какой-либо переменной с помощью символа «:=» и использовать ее далее в расчетах (см. рис. 3). При решении систем уравнений в mathcad результатом всегда будет являтся матрица значений

Рис. 3. Ввод функции Find()

Для того чтобы увидеть результат решения системы уравнений, после Find(x, y, z. ) следует поставить символ «» либо «=» из панели Evaluation (см. рис. 4).

Рис. 4. Панель «Evaluation»

В зависимости от сложности системы через определенное время MathCad выведет результат. На рис. 5 можно рассмотреть синтаксис и результат решения системы уравнений. Обратите внимание, что можно присваивать результат решения системы матричной переменной и можно работать с отдельными ее элементами

Рис. 5. Результат численного решения системы уравнений

Mathcad позволяет решать системы уравний в символьном виде. Обычно это полезно, когда требуется получить не точное значение переменных, а их выражения через константы. Например, если мы заменим все числовые константы на неизвестные параметры и решим уравнение относительно x, y и z, то результат выведется в символьном виде (см. рис. 6). Причем, обратите внимание, что в данном случае нам не нужно вводить начальное приближение и мы должны использовать символ «» для вывода результата. Как правило, символьное решение получается громоздким, поэтому не всегда рекомендуется использовать этот метод

Рис. 6. Результат символьного решения системы уравнений

Использование метода Solve:

Как показывает практика, методом solve иногда удается решить системы уравнений, которые не поддаются решению с помощью функции Find()

Синтаксис следующий: на панели matrix нажимаем иконку Matrix or Vector и в появившемся окне указываем количество уравнений входящих в систему. В нашем примере их будет три (см. рис. 7)

Рис. 7. Создание матрицы для метода SOLVE

Заполняем систему, вводя последовательно все уравнения используя логический символ «ровно» из панели Boolean. Каждый элемент матрицы-столбца содержит одно уравнение (см. рис. 8)

Рис. 8. Ввод системы уравнений для метода SOLVE

Когда все уравнения введены, убедитесь, что курсор ввода находится в вашей матрице и затем нажмите кнопку «solve» из панели Symbolic. Появится служебное слово (функция) solve. Далее поставте запятую и введите последовательно все переменные, относительно которых необходимо решить систему уравнений (см. рис. 9)

Рис. 9. Синтаксис метода SOLVE для решения систем

Уведите курсор в свободное поле mathcad и дождитесь окончания решения системы. Обратите внимание, что мы не вводили начальные приближения. Даный метод их назначает автоматически. Обратите так же внимание, что для решения системы в символьном виде синтаксис аналогичен (см. рис. 10)

Рис. 10. Синтаксис метода SOLVE для решения систем

Как показывает моя инженерная практика, решение систем в символьном виде сопряжено с большими вычислительными трудностями. То есть иногда решение системы занимает массу времени, и в итоге mathcad выдает выражение для одной переменной непомерной длины, которое нельзя использовать. Поэтому рекомендуется прменять эту возможность лишь в крайних случаях и по возможности «помогать» mathcad, заменяя константы известными числовыми значениями

Donec eget ex magna. Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis. Praesent rutrum sem diam, vitae egestas enim auctor sit amet. Pellentesque leo mauris, consectetur id ipsum sit amet, fergiat. Pellentesque in mi eu massa lacinia malesuada et a elit. Donec urna ex, lacinia in purus ac, pretium pulvinar mauris. Curabitur sapien risus, commodo eget turpis at, elementum convallis elit. Pellentesque enim turpis, hendrerit tristique.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis dapibus rutrum facilisis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam tristique libero eu nibh porttitor fermentum. Nullam venenatis erat id vehicula viverra. Nunc ultrices eros ut ultricies condimentum. Mauris risus lacus, blandit sit amet venenatis non, bibendum vitae dolor. Nunc lorem mauris, fringilla in aliquam at, euismod in lectus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In non lorem sit amet elit placerat maximus. Pellentesque aliquam maximus risus, vel venenatis mauris vehicula hendrerit.

Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis. Praesent rutrum sem diam, vitae egestas enim auctor sit amet. Pellentesque leo mauris, consectetur id ipsum sit amet, fersapien risus, commodo eget turpis at, elementum convallis elit. Pellentesque enim turpis, hendrerit tristique lorem ipsum dolor.

Возможности математического пакета MathCad. Приближенные решения уравнений и их систем

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
«МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ ИМ. М. Е. ЕВСЕВЬЕВА»

Кафедра информатики и вычислительной техники

РЕФЕРАТ
Возможности математического пакета MathCad. Приближенные решения уравнений и их систем

студентка группы МДИ-117
Рыбкина В. А.

Введение

При решении некоторых математических задач, при моделировании различных явлений, при автоматизации рабочего места пользователю приходится выбирать ту среду, которая бы позволяла реализовать с наибольшим комфортом многие варианты решений. До недавнего времени исследователю приходилось разрабатывать на основе алгоритма свои программные средства, пользуясь известными языками программирования. В настоящее время появилось много пакетов прикладных программ, в которых за счет встроенного процессора можно, легко освоив правила работы данной среды, проводить построение различных моделей, решать сложные математические задачи и находить значения выражений.

Система MathCad – пакет, предназначенный для проведения математических расчетов, который содержит текстовый редактор, вычислитель и графический процессор. Фирма MathSoft Inc (США) выпустила первую версию системы в 1986 г. Главная отличительная особенность системы MathCad заключается в её входном языке, который максимально приближён к естественному математическому языку, используемому как в трактатах по математике, так и вообще в научной литературе.

От других продуктов аналогичного назначения MathCad отличается ориентацией на создание высококачественных документов (докладов, отчетов, статей) в режиме WYSIWYG (What You See Is What You Get). Это означает, что, внося изменения, пользователь немедленно видит их результаты и в любой момент может распечатать документ во всем блеске. Преимущества MathCad состоит в том, что он не только позволяет провести необходимые расчеты, но и оформить свою работу с помощью графиков, рисунков, таблиц и математических формул. А эта часть работы является наиболее рутинной и мало творческой, к тому же она и время емкая и малоприятная.

1. Основные возможности математического пакета MathCad

1.1 Общая характеристика MathCad

Система MathCad содержит текстовый редактор, вычислитель и графический процессор.

Текстовый редактор служит для ввода и редактирования текстов. Текст может состоять из слов, математических выражений и формул, спецзнаков. Отличительная черта системы – это использование общепринятой в математике символики (деление, умножение, квадратный корень).

Вычислитель обеспечивает вычисление по сложным математическим формулам, имеет большой набор встроенных математических функций, позволяет вычислять ряды, суммы, произведения, определенный интеграл, производные, работать с комплексными числами, решать линейные и нелинейные уравнения, проводить минимизацию функции, выполнять векторные и матричные операции и т. д. Легко можно менять разрядность чисел и погрешность интеграционных методов.

Графический процессор служит для создания графиков. Он сочетает простоту общения с пользователем с большими возможностями графических средств. Графика ориентирована на решение типичных математических задач. Возможно быстрое изменение размеров графиков, наложение их на текстовые надписи и перемещение их в любое место документа.

Многие задачи, решаемые с помощью математических пакетов, сводятся к решению уравнений – алгебраических, степенных, тригонометрических, к поиску значений неизвестных, превращающих эти уравнения в тождества строго или приближенно. Успех в решении подобных задач зависит не только от мощности соответствующих инструментов, встроенных в MathCad , но и от знания пользователем их особенностей, нюансов, сильных и слабых сторон.

Задачи, решаемые в MathCad:

1) Подготовка научно-технической документации, содержащей текст и формулы в привычной для специалиста форме;

2) Вычисления результатов математических операций с константами, переменными и размерными физическими величинами;

3) Векторные и матричные операции;

4) Решение уравнений и систем уравнений;

5) Статистические расчеты и анализ данных;

6) Построение графиков;

7) Аналитические преобразования и аналитическое решение уравнений и систем;

8) Аналитическое и численное дифференцирование и интегрирование;

9) Решение дифференциальных уравнений.

1.2 Структура программы MathCad

Основное окно приложения имеет ту же структуру, что и большинство

приложений Windows. Сверху вниз располагаются заголовок окна, строка меню, панели инструментов (стандартная и форматирования) и рабочий лист,

или рабочая область, документа. Новый документ создается автоматически при запуске MathCad. Файлы документов в MathCad имеют расширение .mcd.

Большинство команд можно выполнить как с помощью меню (верхнего или контекстного), так и панелей инструментов или клавиатуры. Панель Math (Математика) предназначена для вызова на экран еще девяти панелей, с помощью которых происходит вставка математических операций в документы. Чтобы вызвать какую-либо из них, нужно нажать соответствующую кнопку на панели Математика.

В окне редактирования формируется документ MathCad. Новый документ получает имя Untitled (Без названия) и порядковый номер. Одновременно открыто может быть до восьми документов.

Документ состоит из трех видов областей: формульных, текстовых и графических. Расположение нетекстовых блоков в документе имеет принципиальное значение. Области просматриваются системой, интерпретируются и исполняются. Просмотр идет слева направо и сверху вниз.

Для ввода текстового комментария нужно выполнить команду Text Region (Текстовая область) из пункта меню Insert или нажать клавишу с двойной кавычкой (“), или нажать на кнопку текста на панели инструментов. Текстовая область служит для размещения текста между формулами и графиками. При этом в месте ввода появляется курсор в виде вертикального штриха, на место которого вводятся символы текста. Внутри текста курсор перемещается клавишами перемещения курсора. Переход на новую строку производится нажатием на клавишу Enter. Для окончания ввода нужно щелкнуть мышью вне текстовой области.

Для ввода формулы нужно установить указатель мыши в свободном месте окна редактирования и щелкнуть левой кнопкой мыши. Появится визир в виде красного крестика. Он указывает место, с которого начинается набор формулы.

Константами называются поименованные объекты, хранящие некоторые значения, которые не могут быть изменены.

В MathCad применяются десятичные, восьмеричные и шестнадцатеричные числовые константы. Десятичные константы могут быть целочисленными, вещественными, заданными с фиксированной точкой, и вещественными, заданными в виде мантиссы и порядка.

В MathCad содержится особый вид констант – размерные. Помимо своего числового значения они характеризуются еще и указанием на то, к какой физической величине они относятся. Для этого указания используется символ умножения. В системе MathCad заданы следующие основные типы физических величин: time (время), length (длина), mass (масса) и charge (заряд). При необходимости их можно изменить на другие.

Переменные являются поименованными объектами, которым присвоено некоторое значение, которое может изменяться по ходу выполнения программы. Тип переменной определяется ее значением; переменные могут быть числовыми, строковыми, символьными и т. д. Имена констант, переменных и иных объектов называют идентификаторами. Идентификаторы MathCad должны начинаться с буквы и могут содержать следующие символы:

1) латинские буквы любого регистра;

2) арабские цифры от 0 до 9;

3) символ подчеркивания (_), символ процент (%) и символ (.);

4) буквы греческого алфавита (набираются с использованием клавиши Ctrl или применяется палитра греческих букв).

Переменные должны быть предварительно определены пользователем, т. е. им необходимо хотя бы однажды присвоить значение. В качестве оператора присваивания используется знак :=, тогда как знак = отведен для вывода значения константы или переменной. Попытка использовать неопределенную переменную ведет к выводу сообщения об ошибке. MathCad читает рабочий документ слева направо и сверху вниз, поэтому определив переменную, ее можно использовать в вычислениях везде правее и ниже равенства, в котором она определена.

Переменные могут использоваться в математических выражениях, быть аргументами функций или операндом операторов.

Переменные могут быть и размерными, т. е. характеризоваться не только своим значением, но и указанием физической величины, значение которой они хранят. Проведение расчетов с размерными величинами и переменными особенно удобно при решении различных физических задач.

Предопределенные (системные) переменные – особые переменные, которым изначально системой присвоены начальные значения.

Рисунок 1 Предопределенные переменные

Операторы – элементы языка, с помощью которых можно создавать математические выражения. Операторы, обозначающие основные арифметические действия, вводятся с панели Calculator (Калькулятор, Арифметика). Вычислительные операторы вставляются в документы при помощи панели инструментов Calculus (Матанализ). При нажатии любой из кнопок в документе появляется символ соответствующего математического действия, снабженный несколькими местозаполнителями. Результатом действия логических, или булевых, операторов являются только числа 1 (если логическое выражение, записанное с их помощью, истинно) или 0 (если логическое выражение ложно).

2. Приближенные решения уравнений и их систем в MathCad

2.1 Особенности решения уравнений и их систем в MathCad

Алгоритм приближенного решения уравнения f(x)=0 состоит из двух этапов:

1. Нахождения промежутка, содержащего корень уравнения (или начальных приближений для корня);

2. Получения приближенного решения с заданной точностью с помощью функции root.

Нахождение корней полинома

Для нахождения корней выражения, имеющего вид v0+v1x+…+vn-1x n-1 + +vnx n , лучше использовать функцию polyroots, нежели root. В отличие от функции root, функция polyroots не требует начального приближения и возвращает сразу все корни, как вещественные, так и комплексные.

Функция Polyroots(v) – возвращает корни полинома степени n. Коэффициенты полинома находятся в векторе v длины n+1. Возвращает вектор длины n, состоящий из корней полинома.

Решение систем уравнений матричным методом

Рассмотрим систему n линейных алгебраических уравнений относительно n неизвестных х1, х2, …, хn:

Система линейных уравнений может быть записана в матричном виде: Ах = b, где:

Если det A ≠ 0 то система или эквивалентное ей матричное уравнение имеет единственное решение.

Системы линейных уравнений удобно решать с помощью функции lsolve. Функция lsolve(А, b) – возвращает вектор решения x такой, что Ах = b.

Решение системы уравнений методом Гаусса

Метод Гаусса, его еще называют методом Гауссовых исключений, состоит в том, что систему уравнений приводят последовательным исключением неизвестных к эквивалентной системе с треугольной матрицей. В матричной записи это означает, что сначала (прямой ход метода Гаусса) элементарными операциями над строками приводят расширенную матрицу системы к ступенчатому виду, а затем (обратный ход метода Гаусса) эту ступенчатую матрицу преобразуют так, чтобы в первых n столбцах получилась единичная матрица. Последний, (n+1) столбец этой матрицы содержит решение системы.

В MathCad прямой и обратный ходы метода Гаусса выполняет функция rref(A).

Решение систем уравнений с помощью функций Find или Minner

Для решения системы уравнений с помощью функции Find необходимо выполнить следующее:

1. Задать начальное приближение для всех неизвестных, входящих в систему уравнений. MathCad решает систему с помощью итерационных методов;

2. Напечатать ключевое слово Given. Оно указывает MathCad, что далее следует система уравнений;

3. Введите уравнения и неравенства в любом порядке. Используйте [Ctrl]= для печати символа =. Между левыми и правыми частями неравенств может стоять любой из символов , ≥ и ≤;

4. Введите любое выражение, которое включает функцию Find, например: х:= Find(х, у).

Ключевое слово Given, уравнения и неравенства, которые следуют за ним, и какое-либо выражение, содержащее функцию Find, называют блоком решения уравнений.

Функция Minner очень похожа на функцию Find (использует тот же алгоритм). Если в результате поиска не может быть получено дальнейшее уточнение текущего приближения к решению, Minner возвращает это приближение. Функция Find в этом случае возвращает сообщение об ошибке. Правила использования функции Minner такие же, как и функции Find. Функция Minerr(x1, x2, . . .) – возвращает приближенное решение системы уравнений. Число аргументов должно быть равно числу неизвестных.

Символьное решение уравнений

Имеются некоторые задачи, для которых возможности MathCad позволяют находить решения в символьном (аналитическом) виде. Решение уравнений в символьном виде позволяет найти точные или приближенные корни уравнения:

• если решаемое уравнение имеет параметр, то решение в символьном виде может выразить искомый корень непосредственно через параметр. Поэтому вместо того чтобы решать уравнение для каждого нового значения параметра, можно просто заменять его значение в найденном символьном решении;

• если нужно найти все комплексные корни полинома со степенью меньше или равной 4, символьное решение даст их точные значения в одном векторе или в аналитическом или цифровом виде.

Команда Символы → Переменные → Вычислить позволяет решить уравнение относительно некоторой переменной и выразить его корни через остальные параметры уравнения.

2.2 Решения уравнений и их систем в MathCad

Пример 1. Построить график функции f(x) и приблизительно определить один из корней уравнения. Решить уравнение f(x) = 0 с помощью встроенной функции MathCAD root.

Пример 2. Для полинома g(x) выполнить следующие действия:

1. С помощью команды Символы → Коэффициенты полинома создать

вектор V, содержащий коэффициенты полинома;

2. Решить уравнение g(x) = 0 с помощью функции polyroots;

3. Решить уравнение символьно, используя команду Символы →

Пример 3. Решить систему линейных уравнений:

1. Матричным способом и используя функцию lsolve;

2. Методом Гаусса;

3. Используя функцию Find.

Пример 4. Решить систему нелинейных уравнений с помощью функции Minerr .

Пример 5. Символьно решить системы уравнений.

Заключение

MathCad – это универсальная система, которая может использоваться в любой области науки и техники, везде, где применяются математические методы. Запись команд в системе MathCad на языке, очень близком к стандартному языку математических расчетов, упрощает постановку и решение задач.

И так, перечислим основные достоинства MathCad.

Во-первых, это универсальность пакета, который может быть использован для решения самых разнообразных инженерных, экономических, статистических и других научных задач.

Во-вторых, программирование на общепринятом математическом языке позволяет преодолеть языковой барьер между машиной и пользователем. Потенциальные пользователи пакета – от студентов до академиков.

И в-третьих, совместно применение текстового редактора, формульного транслятора и графического процессора позволяет пользователю в ходе вычислений получить готовый документ.

Но, к сожалению, популярный во всем мире пакет MathCad фирмы MathSoft, в России распространен еще слабо, как и все программные продукты подобно рода.

Список использованных источников

1. Белинская, С. И. Использование пакета Mathcad в информатике : учебное пособие / С. И. Белинская. – Иркутск : ИрГУПС, 2012. – 84 с.

2. Гурский, Д. А. Вычисления в MATCHCAD 12 / Д. А. Гурский,
Е. С. Турбина. – СПб.: Питер, 2006. – 544 с.

3. Дьяконов, В. Mathcad 2000. Учебный курс / В. Дьяконов. – СПб.: Питер, 2001. – 592 с.

4. Макаров, Е. Г. Инженерные расчёты в MATCHCAD 14 /
Е. Г Макаров. – СПб.: Питер, 2007. – 592 с.

5. Охорзин, В. А. Прикладная математика в системе Mathcad /
В. А. Охорзин. – Лань, 2009. – 352 с.

6. Очков, В. Mathcad 14 для студентов, инженеров и конструкторов / В. Очков. – BHV.: – Спб, 2007. – 368 с.

7. Поршнев, С. В. Численные методы на базе MATCHCAD /
С. В. Поршнев, И. В. Беленкова. – СПб.: БХВ-Питербург, 2005. – 464 с.

8. Шушкевич, Г. Компьютерные технологии в математике. Система Mathcad 14. Часть 1 / Г. Шушкевич, С. Шушкевич. – Издательство Гревцова. 2010. – 288 с.

Тема 7. Решение дифференциальных уравнений и систем в MathCad

Краткие теоретические сведения

Для решения дифференциальных уравнений с начальными условиями система Mathcad имеет ряд встроенных функций:

rkfixed – функция для решения ОДУ и систем ОДУ методом Рунге–Кутта четвертого порядка с постоянным шагом;

Rkadapt – функция решения ОДУ и систем ОДУ методом Рунге–Кутта с переменным шагом;

Odesolve – функция, решающая ОДУ блочным методом.

Ниже приведено описание стандартной функции rkfixed с указанием параметров функции.

y – вектор начальных условий из k элементов ( k – количество уравнений в системе);

x1 и x2 – левая и правая границы интервала, на котором ищется решение ОДУ или системы ОДУ;

p – число точек внутри интервала (x1, x2), в которых ищется решение;

D – вектор, состоящий из k-элементов, который содержит первую производную искомой функции или первые производные искомых функций, если речь идет о решении системы.

Результатом работы функции является матрица из p +1 строк, первый столбец которой содержит точки, в которых получено решение, а остальные столбцы – сами решения.

На рисунке 2.7.1 приведены конкретные примеры решения различных дифференциальных уравнений и систем ОДУ в MathCAD .

Рисунок 2.7.1 – Примеры решения дифференциальных уравнений и систем

При решении дифференциального уравнения первого порядка нужно создать вектор начальных условий из одного элемента Y 1 , который затем используется при формировании вектора-функции правой части дифференциального уравнения. При обращении к функции rkfixed указывается имя вектора Y , границы интервала, на котором ищется решение уравнения, например, (0 ; 2), количество точек, в которых ищется решение – 100, вектор-функция, описывающая правую часть дифференциального уравнения – D . В результате получается матрица z , в первом столбце которой содержатся значения аргумента искомой функции, во втором – значения самой результирующей функции. При построении графика функции первый столбец полученной матрицы указывается как аргумент, второй столбец – как функция.

При решении системы дифференциальных уравнений нужно создать вектор начальных условий из двух элементов, например, вектор v , который затем используется при формировании вектора-функции правой части дифференциального уравнения. При обращении к функции rkfixed указывается имя вектора v , и границы интервала, на котором ищется решение уравнения, например, (0 ; 5), количество точек, в которых ищется решение – 100, вектор-функция, описывающая правую часть дифференциального уравнения – D . В результате получается матрица s , в первом столбце которой содержатся значения аргумента искомых функций, во втором и третьем столбцах – значения самих функций при соответствующем значении аргумента. При построении графика можно воспользоваться первым столбцом полученной матрицы как аргументом, а вторым и третьим столбцами – как функциями.

На рисунке 2.7.2 приведен пример решения дифференциального уравнения второго порядка с использованием функции rkfixed . Необходимо решить дифференциальное уравнение второго порядка с заданными начальными условиями вида:

Рисунок 2.7.2 – Пример решения дифференциальных уравнений второго порядка с помощью rkfixed

Для решения уравнения с помощью функции rkfixed нужно выполнить замену переменных и привести дифференциальное уравнение второго порядка к двум дифференциальным уравнениям первого порядка. Вид этих уравнений приведен ниже.

Документ формируется точно так же, как и при решении системы ОДУ.

На рисунке 2.7.2 показана возможность вычисления вектора второй производной найденной функции – вектора а, построены графики исходной функции, функций первой и второй производных.

Практическая часть темы 7

7.1 Решение дифференциальных уравнений первого порядка

Последовательность действий для р ешения дифференциального уравнения первого порядка такова:

q сформировать вектор начальных условий из одного элемента, присвоив начальное значение искомой функции переменной с индексом, например: или (в зависимости от значения переменной ORIGIN );

q определить вектор-функцию из одного элемента, которая содержит первую производную неизвестной функции:

· набрать имя функции с двумя параметрами: первый параметр – аргумент искомой функции (независимая переменная), второй – имя вектора, содержащего искомую функцию (можно использовать имя вектора начальных условий), например, D ( x , Y );

· набрать оператор «:=» и выражение для первой производной (выразить из дифференциального уравнения), в котором вместо имени искомой функции подставлен первый элемент вектора-параметра, например, для уравнения вектор-функция будет определятся следующим образом: ( если ORIGIN = 0 , подставлять );

q присвоить некоторой переменной значение функции rkfixed , указав в скобках следующие параметры:

· первый – имя вектора начальных условий,

· второй – левая граница интервала, на котором ищется решение, в виде числовой константы,

· третий – правая граница интервала, на котором ищется решение, в виде числовой константы,

· четвертый – количество точек, в которых ищется решение,

· пятый – имя вектора-функции, описывающего первую производную, без параметров;

например: ,

(в результате получится матрица Z , в первом столбце которой содержатся значения аргумента искомой функции, во втором – значения самой функции);

q вывести матрицу, содержащую решение ДУ с помощь оператора «=», например: Z = ;

q построить график найденной функции ( см. тему 5 ), указав в качестве аргумента по оси абсцисс столбец , а в качестве значения функции по оси ординат – столбец ( если ORIGIN = 0 , набирать соответственно и ).

Пример 7.1 Найти численное решение дифференциального уравнения первого порядка на интервале от 0.2 до 5 в 1000 точках, при начальном условии y (0)=0.1.

Выполнить графическую интерпретацию результатов.

7.2 Решение систем дифференциальных уравнений

Последовательность действий для р ешения системы дифференциальных уравнений первого порядка такова (описана для значения ORIGIN =0 ):

q перейти в исходной системе уравнений к однотипным обозначениям функций и выразить первые производные,

например, систему можно преобразовать в ;

q в документе MathCad сформировать вектор начальных условий, количество элементов которого равно количеству уравнений системы, присвоив его некоторой переменной (см. тему 2);

например, ;

q определить вектор-функцию, которая содержит первые производные искомых функций:

· набрать имя функции с двумя параметрами: первый параметр – аргумент искомых функций (независимая переменная), второй – имя вектора, содержащего искомые функции (можно использовать имя вектора начальных условий), например, D ( t , V );

(Замечание: если независимая переменная явно не присутствует в системе, то в качестве ее имени можно выбрать любую переменную)

· набрать оператор «:=» и вставить шаблон вектора, количество элементов которого равно количеству уравнений системы (см. тему 2)

· набрать в качестве элементов вектора правые части системы уравнений, в которых искомые функции представлены соответствующими элементами вектора-параметра, например,

;

q присвоить некоторой переменной значение функции rkfixed , указав в скобках следующие параметры:

· первый – имя вектора начальных условий,

· второй – левая граница интервала, на котором ищется решение, в виде числовой константы,

· третий – правая граница интервала, на котором ищется решение, в виде числовой константы,

· четвертый – количество точек, в которых ищется решение,

· пятый – имя вектора-функции, описывающего первые производные, без параметров;

например: ,

(в результате получится матрица Z , в первом столбце которой содержатся значения аргумента искомых функций, во втором – значения первой функции, в третьем – значения второй функции и т. д.);

q вывести матрицу, содержащую решение системы ДУ с помощь оператора «=», например: Z = ;

q построить графики найденных функций ( см. тему 5 ), указав в качестве аргумента по оси абсцисс первый столбец матрицы решений, например, , а в качестве значений функций по оси ординат – остальные столбцы матрицы через запятую, например, , и т. д.

Пример 7.2 Найти решение системы дифференциальных уравнений

на интервале от 0 до 0.5 в 1000 точках, при следующих начальных условиях: x (0)=0.1 и y (0)=1.

Выполнить графическую интерпретацию результатов.


источники:

http://infourok.ru/vozmozhnosti-matematicheskogo-paketa-mathcad-priblizhennye-resheniya-uravnenij-i-ih-sistem-4912771.html

http://pandia.ru/text/79/382/38777.php