Matlab численное решение уравнения релаксации осцилляции

Численные методы решения уравнений в среде MatLab

В этом посте я расскажу о численных методах решения уравнений, что очень удобно для их расчёта на компьютере. Приведу 3 вида и 3 примера кода, для каждого вида соответственно, а также расскажу о предостерегающих трудностях и путях их решения.

Иногда нам приходится решать уравнения, кому-то по работе, а кому-то понадобилась для домашних нужд — назовём это так. В школе нас учили, что для решения уравнения, необходимо выразить искомую переменную и тогда мы получим символьное решение уравнения, а если вместо букв поставить числа, то получим численное решение того или иного уравнения. Однако, бывают такие уравнения, в которых нельзя явно выразить искомую переменную, например, уравнение ниже.

Решать такие уравнения приходиться численно, то есть получая ответ в виде числа, а если вам нужна зависимость, то придётся задать диапазон начальных условий и получить, соответственно, диапазон значений искомого параметра.

Предлагаю вам ознакомиться с моей презентацией, а после чего прочитать комментарии и пояснения к ней ниже. Также, в конце записи я опубликовал листинги программ для расчёта указанными методами в среде MatLab.

При решении уравнений 2 или 3 типа, может возникнуть ситуация , когда из большого шага между двумя значениями x и(или) y, мы можем не достичь требуемой точности и тогда результат будет не предсказуем. Для избежания таких случаев предлагаю использовать не сравнение результата с заданным уровнем точности, а сравнение точностей для каждого значения переменной и выбор значения с наибольшей точностью. Подробнее расскажу на примере кода. Рекомендую использовать следующей алгоритм действий для уравнений типа f(x)=const:

  1. разбиваете заданный диапазон значений на n равных интервалов и получаете n+1 значений x
  2. решаете уравнение для каждого значения х
  3. выбираете то значение хi, при котором точность максимальна.
  4. из п. 3 следует, что точное решение находится между хi-1 и хi+1. Устанавливаете новый диапазон значений для x от хi-1 до хi+1, сохраняя то же число интервалов.
  5. Вновь расчитываете уравнение для нового интервала с новым шагом
  6. Повторяете указанные действия до тех пор, пока интервал значений х не будет достаточно мал, чтобы получить требуемую точность вычислений.

Аналогичный алгоритм, лишь с некоторым поправками, можно использовать и для решения уравнений вида f(x,y)=y.

Листинг программы для решения уравнений вида f(x)=x в среде MatLab

Если кому интересно, то ниже производится решение следующего уравнения относительно γ.

Листинг программы для решения уравнений вида f(x,y)=y в среде MatLab

Этот код решает следующее уравнение относительно θ.

На выходе данной программы получаем массив значений угла θ. Границы диапазона θ от 61.7 до 61.8 найдены путём последовательных приближений. Сначала уравнение решалось для всех гамма в пределах угла от 1 до 90 с шагом в 1 градус, затем диапазон сужался по тому же принципу, что и в случае с предыдущем кодом, и действия повторялись до достижения требуемой точности.

Если у вас есть какие-либо вопросы, замечания или предложения, то их в комментариях к данному посту! Удачных вам математических расчётов!

Решатели (solver) ОДУ в MATLAB

Анализ поведения многих систем и устройств в динамике, а также решение многих задач в теории колебаний обычно базируется на решении систем ОДУ. Их, как правило, представляют в виде системы из дифференциальных уравнений (ДУ) первого порядка в форме Коши:

dy/dt = y′ = f(y, t)(1.1)

с граничными условиями y(t0, tend, p) = y, где tend, t0 начальные и конечные точки интервалов. Параметр t (независимая переменная) необязательно означает время, хотя чаще всего решение ДУ ищется во временной области. Система ДУ в форме Коши записывается аналогично (1.1), но под y в этом случае подразумевается вектор-столбец зависимых переменных. Вектор p задает начальные условия.

Для решения ДУ второго и высшего порядка их нужно свести к системе ДУ первого порядка.

Возможны ДУ, не разрешенные относительно производной:

F(t, y, dy/dt) = 0.(1.2)

Уравнения (1.2) аналитически к форме (1.1) обычно привести не удается. Однако численное решение особых трудностей не вызывает достаточно для определения f(y, t) решить (1.2) численно относительно производной при заданных y и t.

Решатели ОДУ

Для решения систем ОДУ в MATLAB реализованы различные численные методы. Их реализации названы решателями ОДУ.

В этом разделе обобщенное название solver (решатель) означает один из возможных численных методов решения ОДУ: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, bvp4c или pdepe.

Решатели реализуют следующие методы решения систем ДУ:

• ode45 одношаговые явные методы Рунге-Кутта 4-го и 5-го порядков в модификации Дорманда и Принца. Это классический метод, рекомендуемый для начальной пробы решения. Во многих случаях он дает хорошие результаты, если система решаемых уравнений нежесткая.

• ode23 одношаговые явные методы Рунге-Кутта 2-го и 4-го порядков в модификации Богацки и Шампина. При умеренной жесткости системы ОДУ и низких требованиях к точности этот метод может дать выигрыш в скорости решения.

• ode113 многошаговый метод Адамса-Башворта-Мултона переменного порядка класса предиктор-корректор. Это адаптивный метод, который может обеспечить высокую точность решения.

• ode15s многошаговый метод переменного порядка (от 1 до 5, по умолчанию 5), использующий формулы численного «дифференцирования назад». Это адаптивный метод, его стоит применять, если решатель ode45 не обеспечивает решения и система ДУ жесткая.

• ode23s одношаговый метод, использующий модифицированную формулу Розенброка 2-го порядка. Может обеспечить высокую скорость вычислений при низкой точности решения жесткой системы ДУ.

• ode23t неявный метод трапеций с интерполяцией. Этот метод дает хорошие результаты при решении задач, описывающих колебательные системы с почти гармоническим выходным сигналом. При умеренно жестких системах ДУ может дать высокую точность решения.

• ode23tb неявный метод Рунге Кутта в начале решения и метод, использующий формулы «дифференцирования назад» 2-го порядка в последующем. Несмотря на сравнительно низкую точность, этот метод может оказаться более эффективным, чем ode15s.

• bvp4c служит для проблемы граничных значений систем ДУ вида y′ = f(t, y), F(y(a), y(b), p) = 0 (полная форма системы уравнений Коши). Решаемые им задачи называют двухточечными краевыми задачами, поскольку решение ищется при задании граничных условий как в начале, так и в конце интервала решения.

Все решатели могут решать системы уравнений явного вида y′ = F(t, y), причем для решения жестких систем уравнений рекомендуется использовать только специальные решатели ode15s, ode23s, ode23t, ode23tb.

Использование решателей систем ОДУ

В описанных далее функциях для решения систем ДУ приняты следующие обозначения и правила:

tspan вектор, определяющий интервал интегрирования [t0 tfinal]. Для получения решений в конкретные моменты времени t0, t1, …, tfinal (расположенные в порядке уменьшения или увеличения) нужно использовать tspan = [t0 t1tfinal];

y0 вектор начальных условий;

• options аргумент, создаваемый функцией odeset (еще одна функция odeget или bvpget (только для bvp4c) позволяет вывести параметры, установленные по умолчанию или с помощью функции odeset/bvpset);

p1, p2,… произвольные параметры, передаваемые в функцию F;

T, Y матрица решений Y, где каждая строка соответствует времени, возвращенном в векторе-столбце T.

Перейдем к описанию синтаксиса функций для решения систем ДУ (под именем solver подразумевается любая из представленных выше функций).

• [T,Y]=solver(@F,tspan,y0) интегрирует систему ДУ вида y′ = F(t, y) на интервале tspan с начальными условиями y0. @F дескриптор ОДУ-функции (можно также задавать функцию в виде ‘F‘). Каждая строка в массиве решений Y соответствует значению времени, возвращаемому в векторе-столбце T.

• [T,Y]=solver(@F,tspan,y0,options) дает решение, подобное описанному выше, но с параметрами, определяемыми значениями аргумента options, созданного функцией odeset. Обычно используемые параметры включают допустимое значение относительной погрешности RelTol (по умолчанию 1e3) и вектор допустимых значений абсолютной погрешности AbsTol (все компоненты по умолчанию равны 1e6).

• [T,Y]=solver(@F,tspan,y0,options,p1,p2…) дает решение, подобное описанному выше, передавая дополнительные параметры p1, p2, … в m-файл F всякий раз, когда он вызывается. Используйте options=[], если никакие параметры не задаются.

Решение ОДУ первого порядка

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Изучить теоретическую часть. Выполните задания, соответствующие номеру Вашего варианта, и продемонстрируйте их преподавателю.

2. Оформите отчет по лабораторной работе, который должен содержать:

· исходные данные варианта;

· результаты решения задачи.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

Пример

Найти решение дифференциального уравнения на отрезке [1,7; 2,7], для которого у(1,7) = 5,3.

Создаем в Command Window функция пользователя

В синтаксисе функции @(x,y) x независимая переменная, y зависимая переменная, x-cos(y/pi) правая часть ДУ.

Процесс решения осуществляется обращением в Command Window к решателю (солверу) следующим оператором:

Построение графика с сеткой осуществляется следующими операторами:

Результат представлен на рис. 1.1

Рис. 1.2.1. Визуализация численного решения

ЗАДАНИЕ

1. Найдите решения ДУ первого порядка , удовлетворяющего начальным условиям у(х0) = у0 на промежутке [a, b].

2. Построить графики функции.

№ варианта у(х0)=у0[a, b]
y0(1,8)=2,6[1,8; 2,8]
y0(0,6)=0,8[0,6; 1,6]
y0(2,1)=2,5[2,1; 3,1]
y0(0,5)=0,6[0,5; 1,5]
y0(1,4)=2,2[1,4; 2,4]
y0(1,7)=5,3[1,7; 2,7]
y0(1,4)=2,5[1,4; 2,4]
y0(1,6)=4,6[1,6; 2,6]
y0(1,8)=2,6[1,8; 2,8]
y0(1,7)=5,3[1,7; 2,7]
y0(0,4)=0,8[0,4; 1,4]
y0(1,2)=1,4[1,2; 2,2]

Лабораторная работа № 2

Решение систем ОДУ

ЦЕЛЬ РАБОТЫ

Сформировать у студентов представления о применении систем ДУ в различных областях; привить умения решать задачу Коши для систем ДУ.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Изучить теоретическую часть. Выполните задания, соответствующие номеру Вашего варианта, и продемонстрируйте их преподавателю.

2. Оформите отчет по лабораторной работе, который должен содержать:

· исходные данные варианта;

· результаты решения задачи.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

Пример

Решить систему при данных начальных условиях с использованием решателя ode23().

Решение:

1. Создать в редакторе m-файл функции вычисления правых частей ДУ.

Пусть имя в редакторе файла sisdu.m, тогда функция может иметь следующий вид:

2. Выполнить следующие действия:

Рис. 1.3.1. Визуализация численного решения, полученного с помощью функции ode23.

ПРИМЕРНЫЕ ВОПРОСЫ НА ЗАЩИТЕ РАБОТЫ

1. Что значит решить задачу Коши для системы ДУ?

2. Какие существуют методы решения систем ДУ?

ЗАДАНИЕ

1. Найдите решение системы ДУ

удовлетворяющее начальным условиям на промежутке [0, 1];

2. Построить графики функций.

Для примера приводится функция решения 8-го варианта:

>> [t,y]=ode23(‘ssisdu’,[0 1],[1 0 0 0]);

Рис. 1.3.2. Визуализация численного решения, полученного с помощью функции ode23.

№ вариантаЗадания
am
0,11,2
0,21,5
0,31,7
0,41,9
0,5
0,61,9
0,72,3
0,82,7
0,9
0,11,5
0,21,1
0,3

Лабораторная работа № 3

1.4Решение ОДУ n-го порядка

ЦЕЛЬ РАБОТЫ

Сформировать у студентов представления о применении ДУ высших порядков в различных областях; привить умения решать задачу Коши для ДУ высших порядков с помощью прикладных программ; развить навыки проверки полученных результатов.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Изучить теоретическую часть. Выполните задания, соответствующие номеру Вашего варианта, и продемонстрируйте их преподавателю.

2. Оформите отчет по лабораторной работе, который должен содержать:

· исходные данные варианта;

· результаты решения задачи.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

Пример 1.

Решить ДУ второго порядка при данных начальных условиях .

Решение:

Сначала приведем ДУ к системе:

1. Создать m-файл функции вычисления правых частей ДУ.

Пусть имя файла sisdu_3.m, тогда функция может иметь следующий вид:

2. Выполнить следующие действия:

Рис. 1.4.1. Визуализация численного решения, полученного с помощью функции ode23.

ПРИМЕРНЫЕ ВОПРОСЫ НА ЗАЩИТЕ РАБОТЫ

1. Что значит решить задачу Коши для ДУ высших порядков?

2. Как привести ДУ m-го порядка к системе ДУ?

ЗАДАНИЕ

1. Найдите решение ДУ, удовлетворяющее начальным условиям на промежутке [0, 10].

2. Построить графики функций.

№ вариантаЗадания
УравненияНачальные условия

Лабораторная работа № 4 – 5

Динамические системы (ДС)

ЦЕЛЬ РАБОТЫ

Знакомство студентов с основными понятиями ДС, их классификация, фазовое пространство ДС, кинематическая интерпретация системы ДУ, эволюция ДС. Уравнение движения маятника. Динамика осциллятора Ван дер Поля.

2. Динамическая система (ДС) математический объект, соответствующий реальным системам (физическим, химическим, биологическим и др.), эволюция которых однозначно определяется начальным состоянием. ДС определяется системой уравнений (дифференциальных, разностных, интегральных и т.д.), допускающих существование на бесконечном интервале времени единственность решения для каждого начального условия.

Состояние ДС описывают набором переменных, выбираемых из соображений естественности их интерпретации, простоты описания, симметрии и т.п. Множество состояний ДС образует фазовое пространство, каждому состоянию отвечает точка в нём, а эволюция изображается (фазовыми) траекториями. Чтобы определить близость состояний, в фазовом пространстве ДС вводят понятие расстояния. Совокупность состояний в фиксированный момент времени характеризуется фазовым объёмом.

Описание ДС в смысле задания закона эволюции также допускает большое разнообразие: оно осуществляется с помощью дифференциальных уравнений, дискретных отображений, с помощью теории графов, теории марковских цепей и т.д. Выбор одного из способов описания задает конкретный вид математической модели соответствующей ДС.

Математическая модель ДС считается заданной, если введены динамические переменные (координаты) системы, определяющие однозначно ее состояние, и указан закон эволюции состояния во времени.

В зависимости от степени приближения одной и той же системе могут быть поставлены в соответствие различные математические модели. Исследование реальных систем идет по пути изучения соответствующих математических моделей, совершенствование и развитие которых определяется анализом экспериментальных и теоретических результатов при их сопоставлении. В связи с этим под динамической системой мы будем понимать именно ее математическую модель. Исследуя одну и ту же ДС (к примеру, движение маятника), в зависимости от степени учета различных факторов мы получим различные математические модели.

Решение нелинейных уравнений в Matlab

Доброго времени суток. В этой статье мы разберем решение простых нелинейных уравнений с помощью средств Matlab. Посмотрим в действии как стандартные функции, так и сами запрограммируем три распространенных метода для решения нелинейных уравнений.

Общая информация

Уравнения, которые содержат переменные, находящиеся в степенях, отличающихся от единицы, или имеющие нелинейные математические выражения (корень, экспонента, логарифм, синус, косинус и т.д.), а также имеющие вид f(x) = 0 называются нелинейными. В зависимости от сложности такого уравнения применяют методы для решения нелинейных уравнений.

В этой статье, помимо стандартных функций Matlab, мы рассмотрим следующие методы:

  • Метод перебора
  • Метод простых итераций
  • Метод половинного деления

Рассмотрим коротко их алгоритмы и применим для решения конкретной задачи.

Стандартные функции Matlab

Для решения нелинейных уравнений в Matlab есть функция fzero. Она принимает в качестве аргументов саму функцию, которую решаем, и отрезок, на котором происходит поиск корней нелинейного уравнения.

И сразу же разберем пример:

Решить нелинейное уравнение x = exp(-x), предварительно определив интервалы, на которых существуют решения уравнения.

Итак, для начала следует привести уравнение к нужному виду: x — exp(-x) = 0 , а затем определить интервалы, в которых будем искать решение уравнения. Методов для определения интервалов множество, но так как пример достаточно прост мы воспользуемся графическим методом.

Здесь задали примерные границы по оси x, чтобы можно было построить график и посмотреть как ведет себя функция. Вот график:

Из графика видно, что на отрезке [0;1] есть корень уравнения (там, где y = 0), соответственно в дальнейшем будем использовать этот интервал. Чем точнее выбран интервал, тем быстрее метод придет к решению уравнения, а для сложных уравнений правильный выбор интервала определяет погрешность, с которой будет получен ответ.

С помощью стандартной функции Matlab находим корень нелинейного уравнения и выводим. Теперь для проверки отобразим все это графически:

Как вы видите, все достаточно точно просчиталось. Теперь мы исследуем эту же функцию с помощью других методов и сравним полученные результаты.

Метод перебора Matlab

Самый простой метод, который заключается в том, что сначала задается какое то приближение x (желательно слева от предполагаемого корня) и значение шага h. Затем, пока выполняется условие f(x) * f(x + h) > 0, значение x увеличивается на значение шага x = x + h. Как только условие перестало выполняться — это значит, что решение нелинейного уравнения находится на интервале [x; x + h].

Теперь реализуем метод перебора в Matlab:

Лучше всего создать новый m-файл, в котором и прописать код. После вызова получаем такой вывод:

Функцию объявляем с помощью очень полезной команды inline, в цикле пока выполняется условие отсутствия корней (или их четного количества), прибавляем к x значение шага. Очевидно, что чем точнее начальное приближение, тем меньше итераций необходимо затратить.

Метод простых итераций Matlab

Этот метод заключается в том, что функцию преобразуют к виду: x = g(x). Эти преобразования можно сделать разными способами, в зависимости от вида начальной функции. Помимо этого следует задать интервал, в котором и будет производиться итерационный процесс, а также начальное приближение. Сам процесс строится по схеме xn= g(xn-1). То есть итерационно проходим от предыдущего значения к последующему.

Процесс заканчивается как только выполнится условие: , то есть, как только будет достигнута заданная точность. И сразу же разберем реализацию метода простых итераций в Matlab для примера, который был приведен выше.

Здесь должно быть все понятно, кроме одного: зачем задавать число итераций? Это нужно для того, чтобы программа не зацикливалась и не выполняла ненужные итерации, а также потому что не всегда программа может просчитать решение с нужной точностью — поэтому следует ограничивать число итераций.

А вот и вывод программы:

Очевидно, что метод простых итераций работает гораздо быстрее и получает точное решение.

Метод половинного деления Matlab

Метод достаточно прост: существует отрезок поиска решения [a;b], сначала находят значение функции в точке середины c, где c = (a+b)/2. Затем сравнивают знаки f(a) и f(c). Если знаки разные — то решение находится на отрезке [a;c], если нет — то решение находится на отрезке [c;b]. Таким образом мы сократили область в 2 раза. Такое сокращение происходит и дальше, пока не достигнем заданной точности.

Перейдем к реализации метода в Matlab:

Все самое важное происходит в цикле: последовательно сокращаем область нахождения решения, пока не будет достигнута заданная точность.
Вот что получилось в выводе:

Этот метод хорошо работает, когда правильно определен интервал, на котором находится решение. Тем не менее, метод простых итераций считается наиболее точным и быстрым.

Заключение

Сегодня мы рассмотрели решение нелинейных уравнений в Matlab. Теперь нам известны методы перебора, половинного деления, простых итераций. А также, когда нам не важно реализация метода, то можно использовать стандартную функцию в Matlab.

На этом все — спасибо за внимание. В следующей статье мы разберем решение систем нелинейных уравнений в matlab.


источники:

http://lektsia.com/1x1ca6.html

http://codetown.ru/matlab/reshenie-nelinejnyh-uravnenij/