Механические волны уравнение волны интенсивность волны

Лекция №10. Механические волны

6.5. Волновой перенос энергии и его характеристики: поток, плотность потока, интенсивность

Пусть в некоторой среде распространяется в направлении оси 0х плоская продольная волна $$S=Acos(ωt-kx+φ)$$ . Выделим в среде элементарный объем ΔV , настолько малый, чтобы скорость движения и деформацию во всех точках этого объема можно было считать одинаковыми и равными. Выделенный объем обладает кинетической энергией $$K=<1 \over 2>mv^2$$ . Если масса $$m=ρΔV$$ , а $$v=<∂S \over ∂t>$$ , то

Потенциальная энергия упругой деформации рассматриваемого объема

где $$k=$$ ; $$l_0$$ − первоначальная длина рассматриваемого объема; $$ε=<Δl \over l_0>$$ − относительная деформация объема; $$ΔV=$$ − первоначальный объем. Используя формулу (6.4.8) и, учитывая, что $$ε=<∂S \over ∂x>$$ , получим

Тогда полная энергия упругой волны

Определим плотность энергии, разделив (6.5.4) на объем ΔV

Продифференцируем уравнение плоской продольной волны (6.2.8) по времени t и по координате х и подставим выражения в формулу (6.5.5) учтя, что $$k^2υ^2=ω^2$$

Среднее значение квадрата синуса равно 1/2. Соответственно среднее по времени значение плотности энергии в каждой точке среды равно

Таким образом, плотность энергии и среднее значение плотности энергии пропорциональны плотности среды ρ , квадрату частоты ω и квадрату амплитуды волны А .

Количество энергии, переносимое волной через некоторую поверхность в единицу времени, называется потоком энергии через эту поверхность. Поток энергии Ф через данную поверхность равен энергии dW переносимой за время dt

Ф измеряется в ваттах.

Для характеристики распространения энергии в разных точках пространства вводится векторная величина, называема плотностью потока энергии. Плотность потока энергии численно равна потоку энергии через единичную площадку ΔS , помещенную в данной точке перпендикулярно к направлению, в котором переносится энергия. Направление вектора плотности потока энергии совпадает с направлением переноса энергии.

Если через площадку ΔS , перпендикулярную к направлению распространения волны, переносится энергия ΔW за время Δt , то плотность потока энергии равна

Рассмотрим объем цилиндра с основанием ΔS и высотой υΔt ( υ − фазовая скорость волны). В случае малого объема цилиндра, плотность энергии во всех точках цилиндра можно было считать одинаковой и поэтому энергию можно найти как произведение плотности энергии ω на объем ΔV=ΔSυΔt

Подставив выражение (6.5.10) в последнее выражение, получим

где j − вектор плотности потока энергии, называемый вектором Умова.

Интенсивность волны равна

Данное выражение справедливо для волны любого вида.

Определим поток энергии через поверхность S . Для этого разобьем поверхность на элементарные участки dS . За время dt через площадку dS пройдет энергия dW . Объем цилиндра, где вычисляется энергия, равен $$dV = υdtdScosϕ$$ . Тогда в этом объеме содержится энергия

где d S = n dS ; n − единичный вектор нормали к поверхности dS .

Поток энергии через элементарную поверхность dS

Поток энергии через поверхность S равен

6.6. Фазовая и групповая скорости волн

Скорость распространения волны есть скорость перемещения фазы и называется фазовой скоростью. Фазовая скорость равна

Если в среде распространяется одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн в отдельности, и к ним применим принцип суперпозиции волн: при распространении в линейной среде (т. е. среде снеизменяющимися свойствами) нескольких волн, каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов.

Используя принципа суперпозиции, любая волна может быть представлена в виде волнового пакета. Волновым пакетом называется суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства. Простейший волновой пакет двух распространяющихся вдоль положительного направления оси Х гармонических волн с одинаковыми амплитудами, близкими частотами и волновыми числами, причем

Эта волна отличается от гармонической тем, что ее амплитуда

медленно изменяющаяся функция координаты х и времени t .

За скорость распространения волнового пакета принимают скорость перемещения максимума амплитуды волны. При условии, что $$tdω-xdk=const$$ , получим

где υгр – групповая скорость. Рассмотрим связь между групповой и фазовой скоростями. Учитывая, что волновое число $$k=<2π \over λ>$$ и $$dk=-<2π \over λ^2>dλ=-dλ$$ , получим

В теории относительности доказывается, что групповая скорость υгр ≤ c , в то время как для фазовой скорости ограничений не существует.

6.7. Интерференция упругих волн

Для того чтобы рассмотреть интерференцию волн, введем понятие когерентности . Согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов связано с понятием когерентности. Волны называются когерентными , если разность их фаз остается постоянной во времени. При наложении в пространстве двух или нескольких когерентных волн в разных его точках получается усиление или ослабление результирующей волны в зависимости от соотношения между фазами этих волн. Это явление называется интерференцией волн, и заключается в том, что колебания в одних точках усиливают, а в других ослабляют друг друга.

Рассмотрим наложение двух когерентных сферических волн, возбуждаемых точечными источниками $$S_1$$ и $$S_2$$ , колеблющимися с одинаковыми амплитудой, частотой, нулевой начальной фазой и постоянной разностью фаз. Запишем уравнения колебаний:

где $$r_1$$ и $$r_2$$ − расстояния от источников волн до рассматриваемой точки.

Амплитуда результирующей волны равна (сложение одинаково направленных колебаний)

Так как разность начальных фаз $$(ϕ_1-ϕ_2)=<2π \over λ>(r_2-r_1)=<2π \over λ>Δ=const$$ , то результат наложения двух волн в различных точках зависит от величины $$Δ=r_2-r_1$$ , называемой разностью хода волн.

В точках, где выполняется условие

Так как квадрат амплитуды колебаний пропорционален интенсивности волны, то получаем

То есть наблюдается усиление интенсивности (увеличение амплитуду) результирующей волны или интерференционный максимум.

2) В точках, где выполняется условие

То есть наблюдается ослабление интенсивности (уменьшение амплитуды) результирующей волны или интерференционный минимум.

Таким образом, в результате наложения двух когерентных волн в среде возникают колебания, амплитуда которых различна в разных точках среды, при этом в каждой точке среды получается или максимум амплитуды, или минимум амплитуды, или ее промежуточное значение − в зависимости от значения разности расстояний точки до когерентных источников. Интерференция света приводит к перераспределению энергии волны между соседними областями, хотя в среднем для больших областей энергия остается неизменной.

6.8. Стоячие волны

Рассмотрим интерференцию стоячих волн. Стоячие волны − это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Запишем уравнение двух плоских волн, распространяющихся вдоль оси Х в противоположных направлениях

Сложив вместе эти уравнения и преобразовав результат по формуле для суммы косинусов, получим уравнение стоячей волны

Из данного уравнения видно, что в каждой точке стоячей волны происходят колебания той же частоты, что и у встречных волн, причем амплитуда зависит от координаты х

Точки, в которых амплитуда колебаний достигает максимального значения и координаты которых удовлетворяют условию

где m = 0, 1, 2, … называются пучностями стоячей волны.

Точки, в которых амплитуда колебаний обращается в нуль и координаты которых удовлетворяют условию

где m = 0, 1, 2, … называются узлами стоячей волны.

Механические волны

Когда в каком-нибудь месте твердой, жидкой или газообразной среды происходит возбуждение колебаний частиц, результатом взаимодействия атомов и молекул среды становится передача колебаний от одной точки к другой с конечной скоростью.

Волна – это процесс распространения колебаний в среде.

Виды механических волн

Различают следующие виды механических волн:

Поперечная волна: частицы среды смещаются в направлении, перпендикулярном направлению распространения механической волны.

Пример: волны, распространяющиеся по струне или резиновому жгуту в натяжении (рисунок 2 . 6 . 1 );

Продольная волна: частицы среды смещаются в направлении распространения механической волны.

Пример: волны, распространяющиеся в газе или упругом стержне (рисунок 2 . 6 . 2 ).

Интересно, что волны на поверхности жидкости включают в себя и поперечную, и продольную компоненты.

Укажем важное уточнение: когда механические волны распространяются, они переносят энергию, форму, но не переносят массу, т.е. в обоих видах волн переноса вещества в направлении распространения волны не происходит. Распространяясь, частицы среды совершают колебания около положений равновесия. При этом, как мы уже сказали, волны переносят энергию, а именно энергию колебаний от одной точки среды к другой.

Рисунок 2 . 6 . 1 . Распространение поперечной волны по резиновому жгуту в натяжении.

Рисунок 2 . 6 . 2 . Распространение продольной волны по упругому стержню.

Модель твердого тела

Характерная черта механических волн – их распространение в материальных средах в отличие, например, от световых волн, способных распространяться и в пустоте. Для возникновения механического волнового импульса необходима среда, имеющая возможность запасать кинетическую и потенциальную энергии: т.е. среда должна иметь инертные и упругие свойства. В реальных средах эти свойства получают распределение по всему объему. К примеру, каждому небольшому элементу твердого тела присуща масса и упругость. Самая простая одномерная модель такого тела представляет из себя совокупность шариков и пружинок (рисунок 2 . 6 . 3 ).

Рисунок 2 . 6 . 3 . Простейшая одномерная модель твердого тела.

В этой модели инертные и упругие свойства разделены. Шарики имеют массу m , а пружинки – жесткость k . Такая простая модель дает возможность описать распространение продольных и поперечных механических волн в твердом теле. При распространении продольной волны шарики смещаются вдоль цепочки, а пружинки растягиваются или сжимаются, что есть деформация растяжения или сжатия. Если подобная деформация происходит в жидкой или газообразной среде, ее сопровождает уплотнение или разрежение.

Отличительная особенность продольных волн заключается в том, что они способны распространяться в любых средах: твердых, жидких и газообразных.

Если в указанной модели твердого тела один или несколько шариков получают смещение перпендикулярно всей цепочке, можно говорить о возникновении деформации сдвига. Пружины, получившие деформацию в результате смещения, будут стремиться вернуть смещенные частицы в положение равновесия, а на ближайшие несмещенные частицы начнет оказываться влияние упругих сил, стремящихся отклонить эти частицы от положения равновесия. Итогом станет возникновение поперечной волны в направлении вдоль цепочки.

В жидкой или газообразной среде упругая деформация сдвига не возникает. Смещение одного слоя жидкости или газа на некоторое расстояние относительно соседнего слоя не приведет к появлению касательных сил на границе между слоями. Силы, которые оказывают воздействие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. Аналогично можно сказать и о газообразной среде.

Таким образом, появление поперечных волн невозможно в жидкой или газообразной средах.

В плане практического применения особый интерес представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ . Синусоидальные волны получают распространение в однородных средах с некоторой постоянной скоростью υ .

Запишем выражение, показывающее зависимость смещения y ( x , t ) частиц среды из положения равновесия в синусоидальной волне от координаты x на оси O X , вдоль которой распространяется волна, и от времени t :

y ( x , t ) = A cos ω t — x υ = A cos ω t — k x .

В приведенном выражении k = ω υ – так называемое волновое число, а ω = 2 π f является круговой частотой.

Бегущая волна

Рисунок 2 . 6 . 4 демонстрирует «моментальные фотографии» поперечной волны в момент времени t и t + Δ t . За промежуток времени Δ t волна перемещается вдоль оси O X на расстояние υ Δ t . Подобные волны носят название бегущих волн.

Рисунок 2 . 6 . 4 . «Моментальные фотографии» бегущей синусоидальной волны в момент времени t и t + Δ t .

Длина волны λ – это расстояние между двумя соседними точками на оси O X , испытывающими колебание в одинаковых фазах.

Расстояние, величина которого есть длина волны λ , волна проходит за период Т . Таким образом, формула длины волны имеет вид: λ = υ T , где υ является скоростью распространения волны.

С течением времени t происходит изменение координаты x любой точки на графике, отображающем волновой процесс (к примеру, точка А на рисунке 2 . 6 . 4 ), при этом значение выражения ω t – k x остается неизменным. Спустя время Δ t точка А переместится по оси O X на некоторое расстояние Δ x = υ Δ t . Таким образом:

ω t — k x = ω ( t + ∆ t ) — k ( x + ∆ x ) = c o n s t или ω ∆ t = k ∆ x .

Из указанного выражения следует:

υ = ∆ x ∆ t = ω k или k = 2 π λ = ω υ .

Становится очевидно, что бегущая синусоидальная волна имеет двойную периодичность – во времени и пространстве. Временной период является равным периоду колебаний T частиц среды, а пространственный период равен длине волны λ .

Волновое число k = 2 π λ – это пространственный аналог круговой частоты ω = — 2 π T .

Сделаем акцент на том, что уравнение y ( x , t ) = A cos ω t + k x является описанием синусоидальной волны, получающей распространение в направлении, противоположном направлению оси O X , со скоростью υ = — ω k .

Когда бегущая волна получает распространение, все частицы среды гармонически колеблются с некоторой частотой ω . Это означает, что как и при простом колебательном процессе, средняя потенциальная энергия, являющаяся запасом некоторого объема среды, есть средняя кинетическая энергия в том же объеме, пропорциональная квадрату амплитуды колебаний.

Из вышесказанного можно сделать вывод, что, когда бегущая волна получает распространение, появляется поток энергии, пропорциональный скорости волны и квадрату ее амплитуды.

Скорость распространения волны

Бегущие волны движутся в среде с определенными скоростями, находящимися в зависимости от типа волны, инертных и упругих свойств среды.

Скорость, с которой поперечные волны распространяются в натянутой струне или резиновом жгуте, имеет зависимость от погонной массы μ (или массы единицы длины) и силы натяжения T :

Скорость, с которой продольные волны распространяются в безграничной среде, рассчитывается при участии таких величин как плотность среды ρ (или масса единицы объема) и модуль всестороннего сжатия B (равен коэффициенту пропорциональности между изменением давления Δ p и относительным изменением объема Δ V V , взятому с обратным знаком):

Таким образом, скорость распространения продольных волн в безграничной среде, определяется по формуле:

При температуре 20 ° С скорость распространения продольных волн в воде υ ≈ 1480 м / с , в различных сортах стали υ ≈ 5 – 6 к м / с .

Если речь идет о продольных волнах, получающих распространение в упругих стержнях, запись формулы для скорости волны содержит не модуль всестороннего сжатия, а модуль Юнга:

Для стали отличие E от B незначительно, а вот для прочих материалов оно может составлять 20 – 30 % и больше.

Рисунок 2 . 6 . 5 . Модель продольных и поперечных волн.

Стоячая волна

Предположим, что механическая волна, получившая распространение в некоторой среде, встретила на пути некое препятствие: в этом случае характер ее поведения резко изменится. К примеру, на границе раздела двух сред с различающимися механическими свойствами волна частично отразится, а частично проникнет во вторую среду. Волна, пробегающая по резиновому жгуту или струне, отразится от зафиксированного конца, и возникнет встречная волна. Если у струны зафиксированы оба конца, появятся сложные колебания, являющиеся итогом наложения (суперпозиции) двух волн, получающих распространение в противоположных направлениях и испытывающих отражения и переотражения на концах. Так «работают» струны всех струнных музыкальных инструментов, зафиксированные с обоих концов. Схожий процесс возникает при звучании духовых инструментов, в частности, органных труб.

Если волны, распространяющиеся по струне во встречных направлениях, обладают синусоидальной формой, то при определенных условиях они образуют стоячую волну.

Допустим, струна длины l зафиксирована таким образом, что один из ее концов расположен в точке x = 0 , а другой – в точке x 1 = L (рисунок 2 . 6 . 6 ). В струне имеется натяжение T .

Рисунок 2 . 6 . 6 . Возникновение стоячей волны в струне, зафиксированной на обоих концах.

По струне одновременно пробегают в противоположных направлениях две волны с одинаковой частотой:

  • y 1 ( x , t ) = A cos ( ω t + k x ) – волна, распространяющаяся справа налево;
  • y 2 ( x , t ) = A cos ( ω t — k x ) – волна, распространяющаяся слева направо.

Точка x = 0 — один из зафиксированных концов струны: в этой точке падающая волна y 1 в результате отражения создает волну y 2 . Отражаясь от зафиксированного конца, отраженная волна входит в противофазу с падающей. В соответствии с принципом суперпозиции (что есть экспериментальный факт) колебания, созданные встречными волнами во всех точках струны, суммируются. Из сказанного следует, что итоговое колебание в каждой точке определяется как сумма колебаний, вызванных волнами y 1 и y 2 в отдельности. Таким образом:

y = y 1 ( x , t ) + y 2 ( x , t ) = ( — 2 A sin ω t ) sin k x .

Приведенное выражение является описанием стоячей волны. Введем некоторые понятия, применимые к такому явлению как стоячая волна.

Узлы – точки неподвижности в стоячей волне.

Пучности – точки, расположенные между узлами и колеблющиеся с максимальной амплитудой.

Если следовать данным определениям, для возникновения стоячей волны оба зафиксированных конца струны должны являться узлами. Указанная ранее формула отвечает этому условию на левом конце ( x = 0 ) . Чтобы условие было выполнено и на правом конце ( x = L ) , необходимо чтобы k L = n π , где n является любым целым числом. Из сказанного можно сделать вывод, что стоячая волна в струне появляется не всегда, а только тогда, когда длина L струны равна целому числу длин полуволн:

l = n λ n 2 или λ n = 2 l n ( n = 1 , 2 , 3 , . . . ) .

Набору значений λ n длин волн соответствует набор возможных частот f

f n = υ λ n = n υ 2 l = n f 1 .

В этой записи υ = T μ есть скорость, с которой распространяются поперечные волны по струне.

Каждая из частот f n и связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота f 1 носит название основной частоты, все прочие ( f 2 , f 3 , … ) называются гармониками.

Рисунок 2 . 6 . 6 иллюстрирует нормальную моду для n = 2 .

Стоячая волна не обладает потоком энергии. Энергия колебаний, «запертая» в отрезке струны между двумя соседними узлами, не переносится в остальные части струны. В каждом таком отрезке происходит периодическое (дважды за период T ) преобразование кинетической энергии в потенциальную и обратно, подобно обычной колебательной системе. Однако, здесь имеется различие: если груз на пружине или маятник имеют единственную собственную частоту f 0 = ω 0 2 π , то струна характеризуется наличием бесконечного числа собственных (резонансных) частот f n . На рисунке 2 . 6 . 7 показано несколько вариантов стоячих волн в струне, зафиксированной на обоих концах.

Рисунок 2 . 6 . 7 . Первые пять нормальных мод колебаний струны, зафиксированной на обоих концах.

Согласно принципу суперпозиции стоячие волны различных видов (с разными значениями n ) способны одновременно присутствовать в колебаниях струны.

Рисунок 2 . 6 . 8 . Модель нормальных мод струны.

Лекция – 14. Механические волны.

2. Механическая волна.

3. Источник механических волн.

4. Точечный источник волн.

5. Поперечная волна.

6. Продольная волна.

9. Периодические волны.

10. Гармоническая волна.

12. Скорость распространения.

13. Зависимость скорости волны от свойств среды.

14. Принцип Гюйгенса.

15. Отражение и преломление волн.

16. Закон отражения волн.

17. Закон преломления волн.

18. Уравнение плоской волны.

19. Энергия и интенсивность волны.

20. Принцип суперпозиции.

21. Когерентные колебания.

22. Когерентные волны.

23. Интерференция волн. а) условие интерференционного максимума, б) условие интерференционного минимума.

24. Интерференция и закон сохранения энергии.

25. Дифракция волн.

26. Принцип Гюйгенса – Френеля.

27. Поляризованная волна.

29. Громкость звука.

30. Высота тона звука.

34. Эффект Доплера.

1.Волна –это процесс распространения колебаний какой-либо физической величины в пространстве. Например, звуковые волны в газах или в жидкостях представляют собой распространение колебаний давления и плотности в этих средах. Электромагнитная волна – это процесс распространения в пространстве колебаний напряженности электрического магнитного полей.

Энергию и импульс можно переносить в пространстве путём переноса вещества. Любое движущееся тело обладает кинетической энергией. Следовательно оно переносит кинетическую энергию, перенося вещество. Это же тело будучи нагретым, перемещаясь в пространстве переносит энергию тепловую, перенося вещество.

Частицы упругой среды связаны между собой. Возмущения, т.е. отклонения от положения равновесия одной частицы передаются соседним частицам, т.е. энергия и импульс передаются от одной частицы соседним частицам, при этом каждая частица остаётся около своего положения равновесия. Таким образом, энергия и импульс передаются по цепочке от одной частице к другой и переноса вещества при этом не происходит.

Итак, волновой процесс есть процесс переноса энергии и импульса в пространстве без переноса вещества.

2. Механическая волна или упругая волна – возмущение (колебание), распространяющееся в упругой среде. Упругой средой, в которой распространяются механические волны, является воздух, вода, дерево металлы и другие упругие вещества. Упругие волны называют звуковыми волнами.

3. Источник механических волн – тело, совершающее колебательное движение, находясь в упругой среде, например колеблющиеся камертоны , струны, голосовые связки.

4. Точечный источник волн –источник волны, размерами которого можно пренебречь по сравнению с расстоянием, на которое распространяется волна.

5. Поперечная волна –волна, в которой частицы среды колеблются в направлении перпендикулярном к направлению распространения волны. Например, волны на поверхности воды – поперечные волны, т.к. колебания частиц воды происходят в направлении перпендикулярном направлению к поверхности воды, а волна распространяется по поверхности воды. Поперечная волна распространяется вдоль шнура, один конец которого закреплён, другой совершает колебания в вертикальной плоскости.

Поперечная волна может распространяться лишь по границе раздела дух разных сред.

6. Продольная волна –волна, в которой колебания происходят в направлении распространения волны. Продольная волна возникает в длинной спиральной пружине, если один её конец подвергается периодическим возмущениям, направленным вдоль пружины. Упругая волна, бегущая вдоль пружины представляет собой распространяющиеся последовательности сжатия и растяжения (Рис. 88)

Продольная волна может распространяться только внутри упругой среды например, в воздухе, в воде. В твёрдых телах и в жидкостях могут распространяться одновременно как поперечные, так и продольные волны, т.к. твёрдое тело и жидкость всегда ограничены поверхностью – поверхностью раздела двух сред. Например, если стальной стержень ударить в торец молотком, то в нём начнёт распространяться упругая деформация. По поверхности стержня побежит поперечная волна, а внутри него будет распространяться волна продольная ( сжатия и разрежения среды) (Рис.89).

7. Фронт волны ( волновая поверхность)– геометрическое место точек, колеблющихся в одинаковых фазах. На волновой поверхности фазы колеблющихся точек в рассматриваемый момент времени имеют одно и тоже значение. Если в спокойное озеро бросить камень, то по поверхности озера от места его падения начнут распространяться поперечные волны в виде окружности, с центром в месте падения камня. В этом примере фронт волны представляет собой окружность.

В сферической волне фронт волны есть сфера. Такие волны порождаются точечными источниками.

На очень больших расстояниях от источника можно пренебречь кривизной фронта и считать фронт волны плоским. В этом случае волна называется плоской.

8. Луч – прямаялиниянормальная к волновой поверхности. В сферической волне лучи направлены вдоль радиусов сфер от центра, где расположен источник волн (Рис.90).

В плоской волне лучи направлены перпендикулярно к поверхности фронта (Рис. 91).

9. Периодические волны. Рассуждая о волнах мы подразумевали однократное возмущение, распространяющееся в пространстве.

Если же источник волн совершает непрерывные колебания, то в среде возникают бегущие одна за одной упругие волны. Такие волны называют периодическими.

10. Гармоническая волна – волна, порождаемая гармоническими колебаниями. Если источник волн совершает гармонические колебания, то он порождает гармонические волны – волны в которых частицы колеблются по гармоническому закону.

11. Длина волны.Пусть гармоническая волна распространяется вдоль оси OX, а колебания в ней происходят в направлении оси OY. Эта волна поперечная и её можно изобразить в виде синусоиды (Рис.92).

Такую волну можно получить, вызывая колебания в вертикальной плоскости свободного конца шнура.

Длиной волны называют расстояние между двумя ближайшими точками А и В, колеблющимися в одинаковых фазах (Рис. 92).

12. Скорость распространения волны – физическая величина численно равная скорости распространения колебаний в пространстве. Из Рис. 92 следует, что время за которое колебание распространяется от точки до точки А до точки В, т.е. на расстояние длины волны равно периоду колебаний. Поэтому скорость распространения волны равна

.

13. Зависимость скорости распространения волны от свойств среды. Частота колебаний при возникновении волны зависит только от свойств источника волны и не зависит от свойств среды. От свойств среды зависит скорость распространения волны. Поэтому длина волны изменяется при переходе границы раздела двух разных сред. Скорость волны зависит от связи между атомами и молекулами среды. Связь между атомами и молекулами в жидкостях и твёрдых телах значительно более жесткая, чем в газах. Поэтому скорости звуковых волн в жидкостях и твёрдых телах значительно больше, чем в газах. В воздухе скорость звука при нормальных условиях равна 340 , в воде 1500 , а в стали 6000 .

Средняя скорость теплового движения молекул в газах с понижением температуры уменьшается и как следствие скорость распространения волны в газах уменьшается. В среде более плотной, а следовательно более инертной, скорость волны меньше. Если звук распространяется в воздухе то его скорость зависит от плотности воздуха. Там , где плотность воздуха больше, там скорость звука меньше. И наоборот там, где плотность воздуха меньше там скорость звука больше. Вследствие этого при распространении звука фронт волны искажается. Над болотом или над озером особенно в вечернее время плотность воздуха вблизи поверхности из- за водяных паров больше чем на некоторой высоте. Поэтому скорость звука вблизи поверхности воды меньше, чем на некоторой высоте. Вследствие этого фронт волны разворачивается таким образом, что верхняя часть фронта всё больше изгибается в направлении к поверхности озера. Получается так, что энергия волны идущей вдоль поверхности озера и энергия волны идущей под углом к поверхности озера складываются. Поэтому в вечернее время звук хорошо распространяется на озером. Даже тихий раговор можно услышать, стоя на противоположном берегу.

14. Принцип Гюйгенса – каждая точка поверхности, которой достигла в данный момент волна является источником вторичных волн. Проведя поверхность касательную к фронтам всех вторичных волн, получим фронт волны в следующий момент времени.

Рассмотрим для примера волну, распространяющуюся по поверхности воды из точки О (Рис.93) Пусть в момент времени t фронт имел форму окружности радиуса R с центром в точке О. В следующий момент времени каждая вторичная волна будет иметь фронт в форме окружности радиуса , где V – скорость распространения волны. Проведя поверхность касательную к фронтам вторичных волн, получим фронт волны в момент времени (Рис. 93)

Если волна распространяется в сплошной среде, то фронт волны представляет собой сферу.

15. Отражение и преломление волн. При падении волны на поверхность раздела двух различных сред каждая точка этой поверхности согласно принципу Гюйгенса становится источником вторичных волн, распространяющихся по обе стороны от поверхности радела. Поэтому при переходе границы раздела двух сред волна частично отражается и частично проходит через эту поверхность. Т.к. среды различные, то и скорость волн в них различна. Поэтому при переходе границы раздела двух сред направление распространения волы изменяется, т.е. происходит преломление волны. Рассмотрим на основе принципа Гюйгенса процесс и законы отражения и преломления полн.

16. Закон отражения волн. Пусть на плоскую поверхность раздела двух различных сред падает плоская волна. Выделим в ней участок между двумя лучами и (Рис.94)

Угол падения – угол — между лучом падающим и перпендикуляром к поверхности раздела в точке падения.

Угол отражения – угол между лучом отраженным и перпендикуляром к поверхности раздела в точке падения.

В момент когда, луч достигнет поверхности раздела в точке , эта точка станет источником вторичных волн. Фронт волны в этот момент отмечен отрезком прямой АС (Рис.94). Следовательно, лучу еще предстоит в этот момент пройти до поверхности раздела путь СВ . Пусть луч проходит этот путь за время . Падающий и отраженный лучи распространяются по одну сторону о поверхности раздела поэтому их скорости одинаковы и равны V. Тогда .

За время вторичная волна из точки А пройдёт путь . Следовательно . Прямоугольные треугольники и равны, т.к. — общая гипотенуза и катеты . Из равенства треугольников и следует равенство углов . Но и , т.е. .

Теперь сформулируем закон отражения волн: луч падающий , луч отраженный , перпендикуляр к границе раздела двух сред, восставленный в точке падения лежат в одной плоскости; угол падения равен углу отражения.

17. Закон преломления волн. Пусть через плоскую границу раздела двух сред проходит плоская волна. Причём угол падения отличен от нуля (Рис.95).

Угол преломления – угол между лучом преломлённым и перпендикуляром к границе раздела, восставленным в точке падения.

Обозначим и скорости распространения волн в средах 1 и 2. В тот момент, когда луч достигнет границы раздела в точке А , эта точка станет источником волн, распространяющихся во второй среде – луч , а лучу ещё предстоит пройти путь до поверхности радела. Пусть — время, за которое луч проходит путь СВ, тогда . За это же время во второй среде луч пройдёт путь . Т.к. , то и .

Треугольники и прямоугольные с общей гипотенузой , и = , как углы с взаимно перпендикулярными сторонами. Для углов и запишем следующие равенства

.

Учитывая, что , , получим

.

Теперь сформулируем закон преломления волн: Луч падающий, луч преломлённый и перпендикуляр к границе раздела двух сред, восставленный в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и называется относительным показателем преломления для двух данных сред.

18. Уравнение плоской волны.Частицы среды, находящиеся на расстоянии S от источника волн начинают колебаться только тогда, когда до неё дойдет волна. Если V есть скорость распространения волны, то колебания начнутся с опозданием на время

.

Если источник волн колеблется по гармоническому закону то для частицы, находящейся на расстоянии S от источника, закон колебаний запишем в виде

.

Введём величину , называемую волновым числом. Оно показывает, сколько длин волн укладывается на расстоянии равном единиц длины. Теперь закон колебаний частицы среды находящейся на расстоянии S от источника запишем в виде

.

Это уравнение определяет смещение колеблющейся точки, как функции времени и расстояния от источника волн и называется уравнением плоской волны.

19. Энергия и интенсивность волны. Каждая частица, до которой дошла волна колеблется и следовательно обладает энергией. Пусть в некотором объёме упругой среды распространяется волна с амплитудой А и циклической частотой . Это значит , что средняя энергия колебаний в этом объёме равна

, где m – масса выделенного объёма среды.

Средняя плотность энергии ( средняя по объёму) есть энергия волны в единице объёма среды

, где плотность среды.

Интенсивность волны – физическая величина, численно равная энергии, которую переносит волна за единицу времени через единицу площади плоскости перпендикулярной к направлению распространения волны ( через единицу площади фронта волны), т.е.

.

Средняя мощность волны есть средняя полная энергия, переносимая волной за единицу времени через поверхность с площадью S . Среднюю мощность волны получим, умножив интенсивность волны на площадь S

.

20.Принцип суперпозиции (наложения). Если в упругой среде распространяются волны от двух и более источников, то как показывают наблюдения, волны проходят одна через другую совершенно не влияя друг на друга. Иными словами волны не взаимодействуют друг с другом. Это объясняется тем что в пределах в пределах упругой деформации сжатия и растяжения в одном направлении никоим образом не влияют на упругие свойства по другим направлениям.

Таким образом, каждая точка среды куда приходят две и более волны принимает участие в колебаниях, вызванных каждой волной. При этом результирующее смещение частицы среды в любой момент времени равно геометрической суммой смещений, вызываемых каждым из складывающихся колебательных процессов. В этом и состоит суть принципа суперпозиции или наложения колебаний.

Результат сложения колебаний зависит от амплитуды, частоты и разности фаз складывающихся колебательных процессов.

21. Когерентные колебания – колебания с одинаковой частотой и постоянной в времени разностью фаз.

22.Когерентные волны – волны одинаковой частоты или одинаковой длины волны, разность фаз которых в данной точке пространства остаётся постоянной во времени.

23.Интерференция волн – явление увеличения или уменьшения амплитуды результирующей волны при наложении двух и более когерентных волн.

а ) .Условия интерференционного максимума. Пусть волны от двух когерентных источников и встречаются в точке А (Рис.96).

Смещения частиц среды в точке А , вызванные каждой волной в отдельности запишем согласно уравнению волны в виде

где и , , — амплитуды и фазы колебаний, вызванных волнами в точке А, и — расстояния точки, — разность эти расстояний или разность хода волн.

Из-за разности хода волн вторая волна запаздывает по сравнению с первой. Это значит, что фаза колебаний в первой волне опережает фазу колебаний во второй волне, т.е. . Их разность фаз остается постоянной во времени.

Для того, чтобы в точке А частицы совершали колебания с максимальной амплитудой , гребни обеих волн или их впадины должны достигнуть точки А одновременно в одинаковых фазах или с разностью фаз равной , где n – целое число, а — есть период функций синуса и косинуса,

,

,

Здесь , поэтому условие интерференционного максимума запишем в виде

, где — целое число .

Итак, при наложении когерентных волн амплитуда результирующего колебания максимальна, если разность хода волн равна целому числу длин волн.

б ) Условие интерференционного минимума. Амплитуда результирующего колебания в точке А минимальна, если в эту точку одновременно придут гребень и впадина двух когерентных волн. Это значит, сто волны придут в эту точку в противофазе, т.е. разность их фаз равна или , где целое число.

Условие интерференционного минимума получим, проведя алгебраические преобразования:

Таким образом, амплитуда колебаний при наложении двух когерентных волн минимальна, если разность хода волн равна нечетному числу полуволн.

24. Интерференция и закон сохранения энергии.При интерференции волн в местах интерференционных минимумов энергия результирующих колебаний меньше, чем энергия интерферирующих волн. Но в местах интерференционных максимумов энергия результирующих колебаний превышает сумму энергий интерферирующих волн настолько, насколько уменьшилась энергия в местах интерференционных минимумов.

При интерференции волн энергия колебаний перераспределяется в пространстве, но закон сохранения строго выполняется.

25.Дифракция волн – явление огибания волной препядствия, т.е. отклонение от прямолинейного распространения волн.

Дифракция особенно хорошо заметна в случае, когда размеры препядствия меньше длины волны или сравнимы с ней. Пусть на пути распространения плоской волны расположен экран с отверстием, диаметр которого сравним с длиной волны (Рис. 97).

По принципу Гюйгенса каждая точка отверстия становится источником таких же волн . Размер отверстия настолько мал, что все источники вторичных волн расположены так близко друг к другу, что их все можно считать одной точкой – одним источником вторичных волн.

Если на пути волны поставить препядствие, размер которого сравним с длиной волны, то края по принципу Гюйгенса становятся источником вторичных волн. Но размеры препядствия настолько малы, что края его можно считать совпадающими, т.е. само препядствие является точечным источником вторичных волн ( Рис.97).

Явление дифракции легко наблюдается при распространении волн по поверхности воды. Когда волна достигает тонкой, неподвижной палочки, она становится источником волн (Рис. 99).

25. Принцип Гюйгенса-Френеля. Если же размеры отвепстия значительно превышают длину волны, то волна, проходя отверстие распространяется прямолинейно (Рис.100).

Если размеры препядствия значительно превышают длину волны, то за препядствием образуется зона тени (Рис.101). Эти опыты противоречат принципу Гюйгенса. Французский физик Френель дополнил принцип Гюйгенса представлением о когерентости вторичных волн. Каждая точка, в которую пришла волна становится источником таких же волн, т.е. вторичных когерентных волн. Поэтому волны отсутствуют только в тех местах, в которых для вторичных волн выполняются условия интерференционного минимума.

26. Поляризованная волна – поперечная волна, в которой колебания всех частиц происходят в одной плоскости. Если свободный конец шнура совершает колебания в одной плоскости, то по шнуру распространяется плоскополяризованная волна. Если свободный конец шнура совершает колебания в различных направлениях, то волна распрстраняющаяся по шнуру не пеоляризована. Если на пути неполяризованной волны поставить препядствие в виде узкой щели, то после прохождении щели волна становится поляризованной, т.к. щель пропускает колебания шнура, происходящие вдоль неё.

Если на пути поляризованной волны поставить вторую щель параллельную первой, то волна свободно пройдет через неё (Рис.102).

Если же вторую щель расположить под прямым углом по отношению к первой, то распространение волы прекратится. Устройство, которое выделяет колебания, происходящие в одной определённой плоскости называется поляризатором (первая щель). Устройство, которое определяет плоскость поляризации называется анализатором.

27.Звук –это процесс распространения сжатий и разрежений в упругой среде например, в газе, жидкости или в металлах. Распространение сжатий и разрежений происходит в результате столкновения молекул.

28. Громкость звука это сила воздействия звуковой волны на барабанную перепонку человеческого уха, которая от звукового давления.

Звуковое давление – это дополнительное давление, возникающее в газе или жидкости при распространении звуковой волны. Звуковое давление зависит от амплитуды колебании источника звука. Если заставить звучать камертон лёгким ударом , то мы получим одну громкость. Но, если камертон ударить сильнее, то амплитуда его колебаний увеличится и он зазвучит громче. Таким образом громкость звука определяется амплитудой колебании источника звука, т.е. амплитудой колебаний звукового давления.

29. Высота тона звукаопределяется частотой колебаний. Чем больше частота звука, тем выше тон.

Звуковые колебания происходящие по гармоническому закону воспринимаются как музыкальный тон. Обычно звук это сложный звук, который представляет собой совокупность колебаний с близкими частотами.

Основной тон сложного звука – это тон соответствующий наименьшей частоте в наборе частот данного звука. Тоны соответствующие остальным частотам сложного звука называются обертонами.

30. Тембр звука. Звуки одним и тем же основным тоном различаются тембром, который определяется набором обертонов.

У каждого человека свой только ему присущий тембр. Поэтому мы всегда можем отличить голос одного человека от голоса другого человека, даже в том случае, когда их основные тоны одинаковы.

31.Ультразвук. Человеческое ухо воспринимает звуки , частоты которых заключены в пределах от 20Гц до 20000Гц.

Звуки с частотами более 20000Гц называются ультразвуками. Ультразвуки распространяются в виде узких пучков и используются в гидролокации и дефектоскопии. С помощью ультразвука можно определить глубину морского дна и обнаружить дефекты в различных деталях.

Например, если рельс не имеет трещин, то ультразвук испущенный из одного конца рельса, отразившись от другого его конца даст только одно эхо. Если же есть трещины, то ультразвук будет отражаться от трещин и приборы будут фиксировать несколько эхо. С помощью ультразвука обнаруживают подводные лодки, косяки рыб. Летучая мышь ориентируется в пространстве с помощью ультразвука.

32. Инфразвук– звук с частотой ниже 20Гц. Эти звуки воспринимаются некоторыми животными . Их источником часто бывают колебания земной коры при землетрясениях.

33. Эффект Доплера – это зависимость частоты воспринимаемой волны от движения источника или приёмника волн.

Пусть на поверхности озера покоится лодка и волны бьются о её борт с некоторой частотой . Если лодка начнёт движение против направления распространения волн, то частота ударов волн о борт лодки станет больше. Причём, чем больше скорость лодки, тем больше частота ударов волн о борт. И наоборот при движении лодки в направлении распространения волн частота ударов станет меньше. Эти рассуждения легко понять из Рис. 103.

Чем больше скорость встречного движения, тем меньшее время затрачивается на прохождение расстояния между двумя ближайшими гребнями, т.е. тем меньше период волны и тем больше частота волны относительно лодки.

Если же наблюдатель неподвижен, но движется источник волн, то частота волны воспринимаемая наблюдателем зависит от движения источника.

Пусть по неглубокому озеру по направлению к наблюдателю идет цапля. Каждый раз, когда она опускает ногу в воду от этого места кругами расходятся волны. И каждый раз расстояние между первой и последней волнами уменьшается, т.е. на меньшем расстоянии укладывается большее число гребней и впадин. Поэтому для неподвижного наблюдателя по направлению к которому идет цапля частота увеличивается. И наоборот для неподвижного наблюдателя, находящегося в диаметрально противоположной точке на большем расстоянии столько же гребней и впадин. Поэтому для этого наблюдателя частота уменьшается (Рис.104).


источники:

http://zaochnik.com/spravochnik/fizika/volny/mehanicheskie-volny/

http://helpiks.org/4-61065.html