Метод бернулли и его уравнения

Дифференциальное уравнение Бернулли и методы его решения

Решение дифференциального уравнения Бернулли приведением к линейному уравнению

Рассмотрим дифференциальное уравнение Бернулли:
(1) ,
где n ≠ 0 , n ≠ 1 , p и q – функции от x .
Разделим его на y n . При y ≠ 0 или n 0 имеем:
(2) .
Это уравнение сводится к линейному с помощью замены переменной:
.
Покажем это. По правилу дифференцирования сложной функции:
;
.
Подставим в (2) и преобразуем:
;
.
Это – линейное, относительно z , дифференциальное уравнение. После его решения, при n > 0 , следует рассмотреть случай y = 0 . При n > 0 , y = 0 также является решением уравнения (1) и должно входить в ответ.

Решение методом Бернулли

Рассматриваемое уравнение (1) также можно решить методом Бернулли. Для этого ищем решение исходного уравнения в виде произведения двух функций:
y = u·v ,
где u и v – функции от x . Дифференцируем по x :
y′ = u′ v + u v′ .
Подставляем в исходное уравнение (1):
;
(3) .
В качестве v возьмем любое, отличное от нуля, решение уравнения:
(4) .
Уравнение (4) – это уравнение с разделяющимися переменными. Решаем его и находим частное решение v = v ( x ) . Подставляем частное решение в (3). Поскольку оно удовлетворяет уравнению (4), то выражение в круглых скобках обращается в нуль. Получаем:
;
.
Здесь v – уже известная функция от x . Это уравнение с разделяющимися переменными. Находим его общее решение, а вместе с ним и решение исходного уравнения y = uv .

Примеры решений дифференциального уравнения Бернулли

Пример 1

Решить уравнение
(П1.1)

Это дифференциальное уравнение Бернулли. Решаем его методом Бернулли. Ищем решение в виде произведения двух функций: . Тогда
. Подставляем в (П1.1):
;
(П1.2) .
Одну из этих функций мы можем выбрать произвольным образом. Выберем v так, чтобы выражение в круглых скобках равнялось нулю:
(П1.3) .
Тогда подставляя (П1.3) в (П1.2), мы получим дифференциальное уравнение с разделяющимися переменными:
(П1.4) .

Сначала мы определим функцию v . Нам нужно найти любое, отличное от нуля, решение уравнения (П1.3). Решаем его. Для этого разделяем переменные и интегрируем.
;
;
;
;
.
Отсюда , или . Возьмем решение с и знаком ′плюс′. Тогда , или .

Итак, мы нашли функции u и v . Находим искомую функцию y :
.
Заменим постоянную интегрирования: . Тогда общее решение исходного уравнения (П1.1) примет вид:
.

Когда мы делили на u , то предполагали, что . Теперь рассмотрим случай . Тогда . Нетрудно видеть, что постоянная функция также является решением исходного уравнения (П1.1) ⇑.

Общее решение уравнения: .
Уравнение также имеет решение .

Пример 2

На первый взгляд, кажется, что это дифференциальное уравнение не похоже на уравнение Бернулли. Если считать x независимой переменной, а y – зависимой (то есть если y – это функция от x ), то это так. Но если считать y независимой переменной, а x – зависимой, то легко увидеть, что это – уравнение Бернулли.

Итак, считаем что x является функцией от y . Подставим в исходное уравнение и умножим на :
;
;
(П2.1) .
Это – уравнение Бернулли с n = 2 . Оно отличается от рассмотренного выше, уравнения (1), только обозначением переменных ( x вместо y ). Решаем методом Бернулли. Делаем подстановку:
x = u v ,
где u и v – функции от y . Дифференцируем по y :
.
Подставим в (П2.1):
;
(П2.2) .
Ищем любую, отличную от нуля функцию v ( y ) , удовлетворяющую уравнению:
(П2.3) .
Разделяем переменные и интегрируем:
;
;
.
Поскольку нам нужно любое решение уравнения (П2.3), то положим C = 0 :
; ; .
Возьмем решение со знаком ′плюс′:
.
Подставим в (П2.2) учитывая, что выражение в скобках равно нулю (ввиду (П2.3)):
;
;
.
Разделяем переменные и интегрируем. При u ≠ 0 имеем:
;
(П2.4) ;
.
Во втором интеграле делаем подстановку :
;
.
Интегрируем по частям:
;
.
Подставляем в (П2.4):
.
Возвращаемся к переменной x :
;
;
.

Автор: Олег Одинцов . Опубликовано: 07-08-2012 Изменено: 29-10-2020

Дифференциальные уравнения Бернулли в примерах решений

Дифференциальным уравнением Бернулли называется уравнение вида

,

Таким образом, дифференциальное уравнение Бернулли обязательно содержит функцию y в степени, отличной от нуля и единицы.

В случае, если m = 0 , уравнение является линейным, а в случае, если m = 1 , уравнение является уравнением с разделяющимися переменными.

Дифференциальное уравнение Бернулли можно решить двумя методами.

  1. Переходом с помощью подстановки к линейному уравнению.
  2. Методом Бернулли.

Переход от уравнения Бернулли к линейному уравнению.

Уравнение делим на :

,

.

Обозначим . Тогда , откуда . Переходя к новой переменной, получим уравнение

,

которое является линейным дифференциальным уравнение первого порядка. Его можно решить методом вариации константы Лагранжа или методом Бернулли.

Решение методом Бернулли.

Решение следует искать в виде произведения двух функций y = uv . Подставив его в дифференциальное уравнение, получим уравнение

.

Из слагаемых, содержащих функцию u в первой степени, вынесем её за скобки:

.

Приравняв выражение в скобках нулю, то есть

,

получим дифференциальное уравнение с разделяющимися переменными для определения функции v .

Функцию u следует находить из дифференциального уравнения

,

которое также является уравнение с разделяющимися переменными.

Пример 1. Решить дифференциальное уравнение Бернулли

.

Решение. Решим дифференциальное уравнение двумя методами.

1. Переход от уравнения Бернулли к линейному уравнению. Данное уравнение умножим на y³ :

.

Введём обозначение , тогда , и приходим к уравнению

.

Решим его методом Бернулли. В последнее уравнение подставим z = uv , z‘ = uv + uv‘ :

,

.

Выражение в скобках приравняем нулю и решим полученное дифференциальное уравнение:

Полученную функцию v подставим в уравнение:

2. Методом Бернулли. Ищем решение в виде произведения двух функций y = uv . Подставив его и y‘ = uv + uv‘ в данное дифференциальное уравнение, получим

Выражение в скобках приравняем нулю и определим функцию v :

Полученную функцию v подставим в уравнение и определим функцию u :

И, наконец, найдём решение данного дифференциального уравнения:

Пример 2. Решить дифференциальное уравнение Бернулли

.

Решение. Это уравнение, в котором m = −1 . Применив подстановку y = uv , получим

Выражение в скобках приравняем нулю и определим функцию v :

Полученную функцию v подставим в уравнение и определим функцию u :

Таким образом, получаем решение данного дифференциального уравнения:

.

Пример 3. Решить дифференциальное уравнение Бернулли

.

Решение. Это уравнение можно решить, используя подстановку y = uv . Получаем

Приравняем нулю выражение в скобках и решим полученное уравнение с разделяющимися переменными:

Подставляем v в данное уравнение и решаем полученное уравнение:

и проинтегрируем обе части уравнения:

Далее используем подстановку

:

.

Таким образом, получаем функцию u :

.

и решение данного дифференциального уравнения:

Пример 4. Решить задачу Коши для дифференциального уравнения

при условии .

Решение. Перепишем уравнение, перенося в левую сторону линейные слагаемые, а в правую — нелинейные:

.

Это уравнение Бернулли, которое можно решить, используя подстановку y = uv , y‘ = uv + uv‘ :

Выражение в скобках приравняем нулю и решим дифференциальное уравнение с разделяющимися переменными:

Подставим функцию v в данное уравнение и решим полученное дифференциальное уравнение:

Вычислим каждый интеграл отдельно. Первый:

.

Второй интеграл интегрируем по частям. Введём обозначения:

Приравниваем друг другу найденные значения интегралов и находим функцию u :

Таким образом, общее решение данного дифференциального уравнения:

.

Используем начальное условие, чтобы определить значение константы:

Ищем частное решение, удовлетворяющее начальному условию:

В результате получаем следующее частное решение данного дифференциального уравнения:

.

И напоследок — пример с альтернативным обозначением производных — через дробь.

Пример 5. Решить дифференциальное уравнение Бернулли

.

Решение. Решим это уравнение первым из представленных в теоретической части методом — переходом к линейному уравнению. Разделив данное уравнение почленно на y³ , получим

.

Введём новую функцию . Тогда

.

Подставляя эти значения в уравнение, полученное на первом шаге, получим линейное уравнение:

.

Найдём его общий интеграл:

,

.

Подставляя эти значение в полученное линейное уравнение, получаем

.

Приравниваем нулю выражение в скобках:

Для определения функции u получаем уравнение

.

Интегрируем по частям:

Таким образом, общий интеграл данного уравнения

.

14. Линейные неоднородные дифференциальные уравнения. Метод Бернулли

(Якоб Бернулли (1654-1705) – швейцарский математик.)

Для интегрирования линейных неоднородных уравнений (Q(X)¹0) применяются в основном два метода: метод Бернулли и метод Лагранжа.

Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций .

При этом очевидно, что — дифференцирование по частям.

Подставляя в исходное уравнение, получаем:

Далее следует важное замечание – т. к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению.

Например, функция может быть представлена как

и т. п.

Таким образом, можно одну из составляющих произведение функций выбрать так, что выражение .

Таким образом, возможно получить функцию U, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:

Для нахождения второй неизвестной функции V подставим поученное выражение для функции U В исходное уравнение с учетом того, что выражение, стоящее в скобках, равно нулю.

Интегрируя, можем найти функцию V:

; ;

Т. е. была получена вторая составляющая произведения , которое и определяет искомую функцию.

Подставляя полученные значения, получаем:

Окончательно получаем формулу:

, С2 — произвольный коэффициент.

Это соотношение может считаться решением неоднородного линейного дифференциального уравнения в общем виде по способу Бернулли.

( Ларганж Жозеф Луи (1736-1813) — французский математик, през. Берлинской АН,

Поч. чл. Пет. АН (1776)).

Метод Лагранжа решения неоднородных линейных дифференциальных уравнений еще называют методом Вариации произвольной постоянной.

Вернемся к поставленной задаче:

Первый шаг данного метода состоит в отбрасывании правой части уравнения и замене ее нулем.

Далее находится решение получившегося однородного дифференциального уравнения:

.

Для того, чтобы найти соответствующее решение неоднородного дифференциального уравнения, будем считать постоянную С1 некоторой функцией от х.

Тогда по правилам дифференцирования произведения функций получаем:

Подставляем полученное соотношение в исходное уравнение

Из этого уравнения определим переменную функцию С1(х):

Подставляя это значение в исходное уравнение, получаем:

.

Таким образом, мы получили результат, полностью совпадающий с результатом расчета по методу Бернулли.

При выборе метода решения линейных дифференциальных уравнений следует руководствоваться простотой интегрирования функций, входящих в исходный интеграл.

Далее рассмотрим примеры решения различных дифференциальных уравнений различными методами и сравним результаты.

Пример. Решить уравнение

Сначала приведем данное уравнение к стандартному виду:

Применим полученную выше формулу:

Определение. Уравнением Бернулли Называется уравнение вида

Где P и Q – функции от Х или постоянные числа, а N – постоянное число, не равное 1.

Для решения уравнения Бернулли применяют подстановку , с помощью которой, уравнение Бернулли приводится к линейному.

Для этого разделим исходное уравнение на Yn.

Применим подстановку, учтя, что .

Т. е. получилось линейное уравнение относительно неизвестной функции z.

Решение этого уравнения будем искать в виде:

Пример. Решить уравнение

Разделим уравнение на Xy2:

Полагаем

.

Полагаем

Произведя обратную подстановку, получаем:

Пример. Решить уравнение

Разделим обе части уравнения на

Полагаем

Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение:

Полагаем C = C(x) и подставляем полученный результат в линейное неоднородное уравнение, с учетом того, что:

Получаем:

Применяя обратную подстановку, получаем окончательный ответ:

Уравнения в полных дифференциалах (тотальные).

Определение. Дифференциальное уравнение первого порядка вида:

Называется Уравнением в полных дифференциалах, если левая часть этого уравнения представляет собой полный дифференциал некоторой функции

Интегрирование такого уравнения сводится к нахождению функции U, после чего решение легко находится в виде:

Таким образом, для решения надо определить:

1) в каком случае левая часть уравнения представляет собой полный дифференциал функции U;

2) как найти эту функцию.

Если дифференциальная форма Является полным дифференциалом некоторой функции U, то можно записать:

Т. е. .

Найдем смешанные производные второго порядка, продифференцировав первое уравнение по У, а второе – по Х:

Приравнивая левые части уравнений, получаем Необходимое и достаточное условие того, что левая часть дифференциального уравнения является полным дифференциалом. Это условие также называется Условием тотальности.

Теперь рассмотрим вопрос о нахождении собственно функции U.

Проинтегрируем равенство :

Вследствие интегрирования получаем не постоянную величину С, а некоторую функцию С(у), т. к. при интегрировании переменная У полагается постоянным параметром.

Определим функцию С(у).

Продифференцируем полученное равенство по У.

Откуда получаем:

Для нахождения функции С(у) необходимо проинтегрировать приведенное выше равенство. Однако, перед интегрированием надо доказать, что функция С(у) не зависит от Х. Это условие будет выполнено, если производная этой функции по Х равна нулю.

Теперь определяем функцию С(у):

Подставляя этот результат в выражение для функции U, получаем:

Тогда общий интеграл исходного дифференциального уравнения будет иметь вид:

Следует отметить, что при решении уравнений в полных дифференциалах не обязательно использовать полученную формулу. Решение может получиться более компактным, если просто следовать методу, которым формула была получена.

Пример. Решить уравнение

Проверим условие тотальности:

Условие тотальности выполняется, следовательно, исходное дифференциальное уравнение является уравнением в полных дифференциалах.

Определим функцию U.

;

Итого,

Находим общий интеграл исходного дифференциального уравнения:

Решение уравнений, не содержащих в одном случае аргумента Х, а в другом – функции У, ищем в параметрической форме, принимая за параметр производную неизвестной функции.

Для уравнения первого типа получаем:

Делая замену, получаем:

В результате этих преобразований имеем дифференциальное уравнение с разделяющимися переменными.

Общий интеграл в параметрической форме представляется системой уравнений:

Исключив из этой системы параметр Р, получим общий интеграл и не в параметрической форме.

Для дифференциального уравнения вида X = F(Y’) с помощью той же самой подстановки и аналогичных рассуждений получаем результат:

Уравнения Лагранжа и Клеро.

( Алекси Клод Клеро (1713 – 1765) французский математик

Ин. поч. член Петерб. АН )

Определение. Уравнением Лагранжа Называется дифференциальное уравнение, линейное относительно Х и У, коэффициенты которого являются функциями от Y.

Для нахождения общего решение применяется подстановка P = Y.

Дифференцируя это уравнение, c учетом того, что , получаем:

Если решение этого (линейного относительно Х) уравнения есть То общее решение уравнения Лагранжа может быть записано в виде:

Определение. Уравнением Клеро Называется уравнение первой степени (т. е. линейное) относительно функции и аргумента вида:

Вообще говоря, уравнение Клеро является частным случаем уравнения Лагранжа.

С учетом замены , уравнение принимает вид:

Это уравнение имеет два возможных решения:

или

В первом случае:

Видно, что общий интеграл уравнения Клеро представляет собой семейство прямых линий.

Во втором случае решение в параметрической форме выражается системой уравнений:

Исключая параметр Р, получаем второе решение F(x, y) = 0. Это решение не содержит произвольной постоянной и не получено из общего решения, следовательно, не является частным решением.

Это решение будет являться особым интегралом. ( См. Особое решение.)

Далее рассмотрим примеры решения различных типов дифференциальных уравнений первого порядка.

Пример. Решить уравнение с заданными начальными условиями.

Это линейное неоднородное дифференциальное уравнение первого порядка.

Решим соответствующее ему однородное уравнение.

Для неоднородного уравнения общее решение имеет вид:

Дифференцируя, получаем:

Для нахождения функции С(х) подставляем полученное значение в исходное дифференциальное уравнение:

Итого, общее решение:

C учетом начального условия Определяем постоянный коэффициент C.

Окончательно получаем:

Для проверки подставим полученный результат в исходное дифференциальное уравнение: верно

Ниже показан график интегральной кривой уравнения.

Пример. Найти общий интеграл уравнения .

Это уравнение с разделяющимися переменными.

Общий интеграл имеет вид:

Построим интегральные кривые дифференциального уравнения при различных значениях С.

С = — 0,5 С = -0,02 С = -1 С = -2

С = 0,02 С = 0,5 С = 1 С = 2

Пример. Найти решение дифференциального уравнения, удовлетворяющее заданным начальным условиям.

Это уравнение с разделяющимися переменными.

Общее решение имеет вид:

Найдем частное решение при заданном начальном условии У(0) = 0.

Окончательно получаем:

Пример. Решить предыдущий пример другим способом.

Действительно, уравнение может быть рассмотрено как линейное неоднородное дифференциальное уравнение.

Решим соответствующее ему линейное однородное уравнение.

Решение неоднородного уравнения будет иметь вид:

Тогда

Подставляя в исходное уравнение, получаем:

Итого

С учетом начального условия у(0) = 0 получаем

Как видно результаты, полученные при решении данного дифференциального уравнения различными способами, совпадают.

При решении дифференциальных уравнений бывает возможно выбирать метод решения, исходя из сложности преобразований.

Пример. Решить уравнение С начальным условием у(0) = 0.

Это линейное неоднородное уравнение. Решим соответствующее ему однородное уравнение.

Для линейного неоднородного уравнения общее решение будет иметь вид:

Для определения функции С(х) найдем производную функции У и подставим ее в исходное дифференциальное уравнение.

Итого

Проверим полученное общее решение подстановкой в исходное дифференциальное уравнение.

(верно)

Найдем частное решение при у(0) = 0.

Окончательно

Пример. Найти решение дифференциального уравнения

С начальным условием у(1) = 1.

Это уравнение может быть преобразовано и представлено как уравнение с разделенными переменными.

С учетом начального условия:

Окончательно

Пример. Решить дифференциальное уравнение с начальным условием у(1) = 0.

Это линейное неоднородное уравнение.

Решим соответствующее ему однородное уравнение.

Решение неоднородного уравнения будет иметь вид:

Подставим в исходное уравнение:

Общее решение будет иметь вид:

C учетом начального условия у(1) = 0:

Частное решение:

Пример. Найти решение дифференциального уравнения с начальным условием у(1) = е.

Это уравнение может быть приведено к виду уравнения с разделяющимися переменными с помощью замены переменных.

Обозначим:

Уравнение принимает вид:

Получили уравнение с разделяющимися переменными.

Сделаем обратную замену:

Общее решение:

C учетом начального условия у(1) = е:

Частное решение:

Второй способ решения.

Получили линейное неоднородное дифференциальное уравнение. Соответствующее однородное:

Решение исходного уравнения ищем в виде:

Тогда

Подставим полученные результаты в исходное уравнение:

Получаем общее решение:

Пример. Решить дифференциальное уравнение с начальным условием у(1)=0.

В этом уравнении также удобно применить замену переменных.

Уравнение принимает вид:

Делаем обратную подстановку:

Общее решение:

C учетом начального условия у(1) = 0:

Частное решение:

Второй способ решения.

Замена переменной:

Общее решение:


источники:

http://function-x.ru/differential_equations9.html

http://matica.org.ua/metodichki-i-knigi-po-matematike/kurs-vysshei-matematiki-3/14-lineinye-neodnorodnye-differentcialnye-uravneniia-metod-bernulli